Market Feed
Corporate Bond Market

Version: 1.3
DATE: 29 October, 2021

NSE DATA & ANALYTICS LIMITED
EXCHANGE PLAZA,
PLOT NO. C/1, G BLOCK,
BANDRA-KURLA COMPLEX,
BANDRA (E), MUMBAI 400 051.
INDIA.

© 2009 National Stock Exchange India Limited. All rights reserved.
COPYRIGHT NOTICE

All rights reserved. No part of this document may be reproduced or transmitted in any form and by any means without the prior permission of NSE Data & Analytics Ltd.
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Final Specification Issued</td>
<td>28 August, 2015</td>
</tr>
<tr>
<td>1.1</td>
<td>Trade structure revised</td>
<td>12 October, 2015</td>
</tr>
<tr>
<td>1.2</td>
<td>Trade structure revised</td>
<td>12 January, 2021</td>
</tr>
<tr>
<td>1.3</td>
<td>Removal of TCP/IP Format, Session Initialization, Login Request, Login Response.</td>
<td>29 October, 2021</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction .. 5
2. Packet Format .. 6
 2.1 Data Type ... 6
 2.2 Diagrammatical Representation ... 6
3. Session Messages ... 9
 3.1 Heartbeat Message (Sent by server) ... 9
 3.2 End of Feed Message (Sent by server) .. 9
4. Sequenced Data Messages (Sent by server) ... 10
 4.1 Online Trade Information ... 10
5. Steps for decompressing the data packets. ... 12
 5.1 LZO Algorithm Details .. 12
 5.2 LZO Algorithm Details .. 12
 5.3 Decompression steps .. 12
6. Checksum Calculation Algorithm ... 14
7. Contact Information ... 15
CORPORATE BOND MARKET – REAL TIME DATA
(SHARED PRODUCT)

1. Introduction

NSE Data & Analytics Ltd. disseminates NSEIL’s Real time Broadcast data to various information agencies. It provides the 3 different types of data to Info Vendors, i.e., Real time Data, Snapshot Data and End of Day Data. The Real time Data is a packet broadcast available through Multicast protocol, whereas the Snapshot Data and End of day data are available in the form of files. Certain products based on the Real time Data are also made available through files.

The information agencies connect to the MDP-RT Server through Leased Lines. These leased lines are terminated on MDP-RT Router and their data specific pneumonic calls are forwarded to MDP-RT server. The MDP-RT server accepts these pneumonic calls and creates a socket connection.

This document explains about the NSE – CBRICS Feed product. Through this product, information NSE’s CBRICS (Corporate Bond Reporting Platform - http://www.bricsonline.net) information is disseminated on real time basis.
2. Packet Format

2.1 Data Type

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Size In Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>INT</td>
<td>4</td>
</tr>
<tr>
<td>LONG</td>
<td>4</td>
</tr>
<tr>
<td>DOUBLE</td>
<td>8</td>
</tr>
</tbody>
</table>

2.2 Diagrammatical Representation

1. Compression Header: Also called as Compression Header, this section of the packet describes whether the data packet is compressed, how many messages it carries, etc.

2. Data Payload: This contains the actual data messages or records.

The format is diagrammatically represented as follows:
Compressed Header
1. Compressed/ Uncompressed = 0 then compressed/ 1 uncompressed
2. Number of packets = Number of records in compressed data
3. Data Size = Compressed data size

As the data packets are sent in compressed format there is a need to decompress them. The compression algorithm used is LZO.

All the packets received from server consist of Compression Header. Compression Header indicates whether the data is compressed or not. It also specifies the number of packets in the batch and the size of data payload. In case the data is compressed, the client is required to decompress the data payload using LZO decompression algorithm.

Server sends all the packets in following format:

typedef struct
{
 CHAR cCompOrNot;
 SHORT nDataSize;
 SHORT iNoOfPackets;
}ST_COMP_BATCH_HEADER
typedef
struct
{
 SHORT iCode;
 SHORT iLen;
 LONG lSeqNo;
}ST_INFO_HEADER;
typedef
struct
{
 .
 .
}ST_DATA_INFO;
typedef
struct
{
 SHORT iCheckSum;
 CHAR cEOT;
}ST_INFO_TRAILER;
All the packets received from server consist of compress batch header. Compress batch header gives the information about the data packet compressed or not, number of packets in the following data packet and the total size of data packet. Client needs to decompress the data packet using LZO decompression algorithm. After decompression each data packet consists of ST_INFO_HEADER, which has the iCode field to identify the type of the packet. Using iCode field, data info packet is mapped to the respective data packet.
3. **Session Messages**

3.1 **Heartbeat Message (Sent by server)**

Heartbeat message will be sent if data is not available.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO HEADER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>SHORT</td>
<td>‘CH’</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>SHORT</td>
<td>Numeric</td>
<td>Size of (INFO HEADER + INFO DATA + INFO TRAILER)</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>LONG</td>
<td>Numeric</td>
<td>0 (Zero)</td>
</tr>
<tr>
<td>INFO DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not associated with any data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFO TRAILER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Sum</td>
<td>SHORT</td>
<td>Numeric</td>
<td>0 (Zero)</td>
</tr>
<tr>
<td>End Of Trailer</td>
<td>CHAR</td>
<td>‘\r’</td>
<td>Carriage Return</td>
</tr>
</tbody>
</table>

3.2 **End of Feed Message (Sent by server)**

End of Feed message will be sent to indicate feed termination.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO HEADER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>SHORT</td>
<td>‘CE’</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>SHORT</td>
<td>Numeric</td>
<td>Size of (INFO HEADER + INFO DATA + INFO TRAILER)</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>LONG</td>
<td>Numeric</td>
<td>0 (Zero)</td>
</tr>
<tr>
<td>INFO DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not associated with any data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFO TRAILER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Sum</td>
<td>SHORT</td>
<td>Numeric</td>
<td>0 (Zero)</td>
</tr>
<tr>
<td>End Of Trailer</td>
<td>CHAR</td>
<td>‘\r’</td>
<td>Carriage Return</td>
</tr>
</tbody>
</table>
4. Sequenced Data Messages (Sent by server)

Sequenced data messages will be sent by server and will contain the actual market data.

4.1 Online Trade Information

NSE-CBRICS Trade information is sent through this message.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO HEADER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>SHORT</td>
<td>‘CX’</td>
<td>Size of (INFO HEADER + INFO DATA + INFO TRAILER)</td>
</tr>
<tr>
<td>Length</td>
<td>SHORT</td>
<td>Numeric</td>
<td></td>
</tr>
<tr>
<td>Sequence Number</td>
<td>LONG</td>
<td>Numeric</td>
<td>0 (Zero)</td>
</tr>
<tr>
<td>INFO DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Stamp</td>
<td>CHAR[11]</td>
<td>Character</td>
<td>No of seconds from 01-01-1970 00:00:00 (DD-MM-YYYY HH:MM:SS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o ‘U’ – OTC unlisted Bonds</td>
</tr>
<tr>
<td>ISIN</td>
<td>CHAR[12]</td>
<td>Character</td>
<td>ISIN Code of the Bond</td>
</tr>
<tr>
<td>Descriptor</td>
<td>CHAR[128]</td>
<td>Character</td>
<td>Descriptor of the Bond</td>
</tr>
<tr>
<td>Weighted Average Price</td>
<td>CHAR[24]</td>
<td>Character</td>
<td>Weighted Average Price in Rupees</td>
</tr>
<tr>
<td>(Rupees)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Average Yield</td>
<td>CHAR[24]</td>
<td>Character</td>
<td>Weighted Average Yield (YTM) - Percent</td>
</tr>
<tr>
<td>(YTM %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Trades</td>
<td>CHAR[24]</td>
<td>Character</td>
<td>No. of Trades</td>
</tr>
<tr>
<td>Total Trade Value</td>
<td>CHAR[24]</td>
<td>Character</td>
<td>Total Trade Value in Rupees</td>
</tr>
<tr>
<td>(Rupees)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Trade Price</td>
<td>CHAR[24]</td>
<td>Character</td>
<td>Last Trade Price in Rupees</td>
</tr>
<tr>
<td>(Rupees)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Trade Yield</td>
<td>CHAR[24]</td>
<td>Character</td>
<td>Last Trade Yield (YTM, Annualized) - Percent</td>
</tr>
<tr>
<td>(YTM, Annualized, %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>CHAR[1]</td>
<td>Character</td>
<td>1 = NSE CBRICS Reporting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 = RFQ</td>
</tr>
</tbody>
</table>
| Deal Type | CHAR[1] | Character | D = Direct
| | | | B = Brokered
| ISIN Category | CHAR[2] | Character | I = Inter scheme Transfer
| INFO TRAILER | SHORT | Numeric | CB = Corporate Bond
| Check Sum | CHAR | \’r\’ | CP = Commercial Paper
| End Of Trailer | CHAR | Carriage Return | CD = Certificate of Deposit
| | | | SD = Securitized Debt
| | | | GS = GSEC / TBILL / SL
| | | | Refer Section on “Checksum Calculation Algorithm” |
5. Steps for decompressing the data packets.

5.1 LZO Algorithm Details

LZO is a data compression library which is suitable for data de-/compression in real-time. This means it favors speed over compression ratio.
LZO is written in ANSI C. Both the source code and the compressed data format are designed to be portable across platforms.

- LZO implements a number of algorithms with the following feature
 - Decompression is simple and *very* fast.
 - Requires no memory for decompression.
 - Requires 64 KB of memory for compression.
 - Allows you to dial up extra compression at a speed cost in the compressor.
 - The speed of the decompression is not reduced.
 - Includes compression levels for generating pre-compressed data which achieve a quite competitive compression ratio.
 - There is also a compression level which needs only 8 KB for Compression.
 - Algorithm is thread safe.
 - Algorithm is lossless.
 - LZO supports overlapping compression and in-place decompression.

5.2 LZO Algorithm Details

- Include files, source files (src) provided by LZO
- LZO library version used is 1.0.7

5.3 Decompression steps

Receive the packet in the temporary buffer i.e. array of characters.

The first field is compressed or not compressed?
The second field is the number of packet in the following data packet.
The third field is data packet length.

Use the following function of LZO to Decompress.

```
r = lzolz_decompress ((lzo_byte*)cInputBuf, ipLength,
                     (lzo_byte*)cOutputBuf, (lzo_uint*)&opLength, NULL);
```

- lzolz_decompress: Function which decompresses the data packet received
- cInputBuf: Input buffer in which compressed data is received
- ipLength: The length of the packet which application has received using Receive().
- cOutputBuf: The uncompressed output data which is result of decompression.
- opLength: Length of uncompressed data

After decompression data will be available in Output Buffer.

Each output data packet contains the INFO HEADER, after mapping the output decompressed buffer to INFO HEADER find out the data packet and the according to it map the output buffer to respective data packet.

Algorithm:

```c
ST_INFO_HEADER *pstInfoHeader = NULL;
for (i=0; i < iNoOfPackets; i++) // iNoOfPackets received in Compressed data header
{ pstInfoHeader = (ST_INFO_HEADER*) cOutputBuf;
  switch (pstInfoHeader->iCode)
  { case CX: //Indices Information
    { ST_INDEX_DATA* stIndexData = (ST_INDEX_DATA*)cOutputBuf;
      ... cOutputBuf = cOutputBuf + sizeof(ST_INDEX_DATA);
      break;
    }
  }
}
```
6. Checksum Calculation Algorithm

The Checksum routine followed for Info Vendor Feed is as follows:

```c
// Following are the defines for checksum calculation
#define DC1 17
#define DC3 19
#define CR 13
#define LF 10
#define POLY 0x1021

unsigned check_sum (cData, iLength)
char *cData ; int iLength;
{
    unsigned uAccum = 0;
    unsigned uData;
    unsigned char ucChk[2];
    int i,j;
    for (i=0;i<iLength;i++)
    {
        uData = *(cData+i); uData <<= 8; for(j=8; j>0 ;j--)
            { if((uData^uAccum)&0x8000)
                uAccum=(uAccum<<1)^POLY; /* SHIFT
                    AND SUBTRACT POLY */
                else
                uAccum<<=1;
                uData<<=1;
            }
    }
    ucChk[0] = uAccum>>8;
    if (ucChk[0] == DC1 || ucChk[0] == DC3 || ucChk[0] == CR ||
        ucChk[0] == LF ) ucChk[0] -= 1; ucChk[1] = uAccum&0xFF;
    uAccum = ucChk[1]; uAccum =
    (uAccum<<8) + ucChk[0];

    return(uAccum);
}
```

7. Contact Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business & Technical</td>
<td>marketdata@nse.co.in</td>
<td>+91-22-26598385</td>
</tr>
<tr>
<td>Support</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>