Bank Presence and Health

Kim Fe Cramer

Columbia Business School Job Market Candidate 2021

NSE – NYU Conference

December 10, 2021

Findings

This Paper

Research question

How does bank presence affect health?

This Paper

Research question

How does bank presence affect health?

Identification strategy

- Nationwide natural experiment
- Policy of the Reserve Bank of India (RBI)
- Policy incentivizes banks to set up new branches in treatment districts
- Regression discontinuity design

What Do We Already Know?

- 1. Natural experiments show that financial development stimulates business activity and increases household income
 - Bruhn and Love (2014), Breza and Kinnan (2021), Burgess and Pande (2005), Rajan and Zingales (1998)

What Do We Already Know?

- 1. Natural experiments show that financial development stimulates business activity and increases household income
 - Bruhn and Love (2014), Breza and Kinnan (2021), Burgess and Pande (2005), Rajan and Zingales (1998)
 - RCTs providing large cash transfers suggest income alone is no silver bullet for improving health (Haushofer and Shapiro, 2013, 2018; Egger et al., 2018)

Explanations Developed countries

What Do We Already Know?

- 1. Natural experiments show that financial development stimulates business activity and increases household income
 - Bruhn and Love (2014), Breza and Kinnan (2021), Burgess and Pande (2005), Rajan and Zingales (1998)
 - RCTs providing large cash transfers suggest income alone is no silver bullet for improving health (Haushofer and Shapiro, 2013, 2018; Egger et al., 2018)

Explanations Developed countries

- 2. RCTs providing savings accounts and credit products for households find no effects on health
 - Banerjee et al. (2015), Dupas et al. (2018), Karlan and Zinman (2010)

Contribution

1. Exogenous variation in bank presence to study impact on health In contrast to RCTs: Access for households, businesses, and health care providers and a large-scale long-term setting (Breza and Kinnan, 2021)

Contribution

- 1. Exogenous variation in bank presence to study impact on health In contrast to RCTs: Access for households, businesses, and health care providers and a large-scale long-term setting (Breza and Kinnan, 2021)
- 2. Novel evidence on two aspects of banking: health insurance for households and credit for health care providers

The Policy

Timing

Introduced in 2005, remains intact until today

Historical Context Papers Using Same or Similar Policy

The Policy

Timing

Introduced in 2005, remains intact until today

Historical Context Papers Using Same or Similar Policy

Objective

Incentivize banks to open branches in underserved locations

The Policy

Timing

Introduced in 2005, remains intact until today

Historical Context | Papers Using Same or Similar Policy

Objective

Incentivize banks to open branches in underserved locations

Policy

• Banks increase **chance to obtain license** for favored location by **strengthening presence** in underbanked districts

Definition

 $\frac{\text{Population}_{District}}{\# \text{ Bank Branches}_{District}} > \frac{\text{Population}_{National}}{\# \text{ Bank Branches}_{National}}$

Definition

Definition

 $\underbrace{\frac{\text{Population}_{District}}{\# \text{ Bank Branches}_{District}}}_{\text{Underbanked/Treated}} > \frac{\text{Population}_{National}}{\# \text{ Bank Branches}_{National}}$

List of underbanked districts

- Published in 2006, not updated
- Only names, reconstruct ratio

Definition

 $\underbrace{\frac{\text{Population}_{District}}{\# \text{ Bank Branches}_{District}}}_{\text{Underbanked/Treated}} > \frac{\text{Population}_{National}}{\# \text{ Bank Branches}_{National}}$

List of underbanked districts

- Published in 2006, not updated
- Only names, reconstruct ratio

Regression discontinuity design

- Forcing variable: District-level ratio
- Cutoff: National-level ratio
- Fuzzy

Fuzzy RDD: Strong First Stage

Reconstruction of ratio

- Numerator: 2001 Population Census
- Denominator: 2006 Branch Statistics RBI

Distribution of the District-Level Ratio

• I only consider districts just around the cutoff

Geographical Distribution in 2006

593 districts (63% underbanked)

Within typical bandwidth

• Bank Branch Data from the RBI

- Total number of branch licenses and branches

Maps of Implementation

- Bank Branch Data from the RBI
 - Total number of branch licenses and branches

• Indian Human Development Survey (IHDS)

- $\sim 40,000$ households
- Data on health and economic outcomes
- Pre: 2004/2005 IHDS I
- Post: 2011/2012 IHDS II

Maps of Implementation

- Bank Branch Data from the RBI
 - Total number of branch licenses and branches

• Indian Human Development Survey (IHDS)

- $\sim 40,000$ households
- Data on health and economic outcomes
- Pre: 2004/2005 IHDS I
- Post: 2011/2012 IHDS II

• Demographic and Health Survey (DHS)

- $\sim 600,000$ households
- Allows to capture low-probability events, e.g. miscarriages
- Post: 2015/2016

Maps of Implementation

- Bank Branch Data from the RBI
 - Total number of branch licenses and branches

• Indian Human Development Survey (IHDS)

- $\sim 40,000$ households
- Data on health and economic outcomes
- Pre: 2004/2005 IHDS I
- Post: 2011/2012 IHDS II

• Demographic and Health Survey (DHS)

- $\sim 600,000$ households
- Allows to capture low-probability events, e.g. miscarriages
- Post: 2015/2016

• Economic Census

- All health care establishments
- Major source of financing
- Pre: 2005
- Post: 2013

Maps of Implementation

- Bank Branch Data from the RBI
 - Total number of branch licenses and branches

• Indian Human Development Survey (IHDS)

- $\sim 40,000$ households
- Data on health and economic outcomes
- Pre: 2004/2005 IHDS I
- Post: 2011/2012 IHDS II

• Demographic and Health Survey (DHS)

- $\sim 600,000$ households
- Allows to capture low-probability events, e.g. miscarriages
- Post: 2015/2016

• Economic Census

- All health care establishments
- Major source of financing
- Pre: 2005
- Post: 2013

• Other: Prowess and SHRUG

Maps	$^{\rm of}$	Implementation
------	-------------	----------------

Timeline

Regression Specification

$$\begin{aligned} \text{Underbanked}_{d,s} &= \alpha_0 + \alpha_1 \text{Above}_{d,s} + \alpha_2 \text{DistRatio}_{d,s} \\ &+ \alpha_3 \text{DistRatio}_{d,s} \text{Above}_{d,s} + \lambda X_{d,s} + \mu_s + v_{d,s} \end{aligned} \tag{1}$$

$$y_{h,d,s} = \beta_0 + \beta_1 \text{Underbanked}_{d,s} + \beta_2 \text{DistRatio}_{d,s} + \beta_3 \text{DistRatio}_{d,s} \text{Above}_{d,s} + \gamma X_{d,s} + \eta_s + \epsilon_{h,d,s}$$
(2)

- h = household, d = district, s = state
- $y = outcome \{ illness past month, health insurance,... \}$
- Main specification: MSE-optimal bandwidth (Calonico et al., 2014)
- Main specification: linear functions (Gelman and Imbens, 2019)
- State-level FE
- Cluster SE at the district-level
Comparison Within State

All India

IA: Within the same state, districts just above and just below the cutoff are **comparable** in all relevant aspects, except their treatment status

IA: Within the same state, districts just above and just below the cutoff are **comparable** in all relevant aspects, except their treatment status

No manipulation

IA violated if local governments manipulate ratio to become treated

IA: Within the same state, districts just above and just below the cutoff are **comparable** in all relevant aspects, except their treatment status

No manipulation

IA violated if local governments manipulate ratio to become treated

1. Construction of the ratio makes manipulation unlikely

IA: Within the same state, districts just above and just below the cutoff are **comparable** in all relevant aspects, except their treatment status

No manipulation

IA violated if local governments manipulate ratio to become treated

- 1. Construction of the ratio makes manipulation unlikely
- 2. No empirical evidence of manipulation
 - (a) McCrary density test Graph 🗸

IA: Within the same state, districts just above and just below the cutoff are **comparable** in all relevant aspects, except their treatment status

No manipulation

IA violated if local governments manipulate ratio to become treated

- 1. Construction of the ratio makes manipulation unlikely
- 2. No empirical evidence of manipulation
 - (a) McCrary density test Graph 🗸
 - (b) Smoothness before the policy \checkmark

Bank presence, health status, household consumption and financial access, hospital presence, general economic activity and population characteristics

IA: Within the same state, districts just above and just below the cutoff are **comparable** in all relevant aspects, except their treatment status

No manipulation

IA violated if local governments manipulate ratio to become treated

- 1. Construction of the ratio makes manipulation unlikely
- 2. No empirical evidence of manipulation
 - (a) McCrary density test Graph 🗸
 - (b) Smoothness before the policy Graphs \checkmark

No other potential threats Evidence

- No evidence of migration
- No evidence for other policies

Findings

1. Bank presence increases

• Banks obtain more licenses and open branches

2. Health improves

- Morbidity rate decreases
- Vaccination rate increases
- Pregnancies becomes safer

3. Mechanisms

Banks Open Branches

	$\begin{array}{c} \text{Pre-policy} \\ (2004) \end{array}$	$\begin{array}{c} ext{Post-policy} \ (2010) \end{array}$
	Branches (log no.) (1)	Branches (log no.) (2)
Treated	0.01 (0.02)	0.17^{***} (0.06)
Control Mean Mean Change (%) Bandwidth Efficient Obs. Observations Baseline Control	3.98 1.01 3,621 230 562 Yes	4.38 18.98 3,329 213 561 Yes

* p <0.1, ** p <0.05, ** p <0.01. Standard errors in parentheses. Data RBI Master Office File. District level. The variable from 1997 is included as a baseline control.

• Five years after the policy, banks have **19% more branches** in treatment districts (control mean 7 branches per 100,000 people)

Banks Open Branches

 Different Binned Means
 2nd Degree
 Licenses

 Introduction
 Design
 Findings
 Mechanisms
 Conclusion
 18

Dynamics Correspond to Policy Timing

Findings

1. Bank presence increases

• Banks obtain more licenses and open branches

2. Health improves

- Morbidity rate decreases
- Vaccination rate increases
- Pregnancies becomes safer

3. Mechanisms

Morbidity Rate Decreases

	Post-Policy $(2011/2012)$				
	Days ill	Days missed	Medical		
	(non-chronic)	due to illness	expenses		
	(log no.)	(log no.)	(log Rs.)		
	(1)	(2)	(3)		
Treated	-0.29^{**}	-0.44^{***}	-0.88^{**}		
	(0.12)	(0.13)	(0.35)		
Control Mean	0.82	$\begin{array}{c} 0.58 \\ \textbf{-35.40} \\ 2,513 \\ 12,421 \\ 33,346 \end{array}$	2.12		
Mean Change (%)	-25.21		-58.56		
Bandwidth	2,658		2,948		
Efficient Obs.	12,968		14,576		
Observations	32,280		32,983		

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household level.

• Six years after the policy, households in treatment districts have 25% fewer days they are ill with a non-chronic disease (e.g. diarrhea), miss half a day less of work or school and have lower medical expenses

Morbidity Rate Decreases

 22

Findings

1. Bank presence increases

• Banks obtain more licenses and open branches

2. Health improves

- Morbidity rate decreases
- Vaccination rate increases Table
- Pregnancies becomes safer Table

3. Mechanisms

Findings

1. Bank presence increases

• Banks obtain more licenses and open branches

2. Health improves

- Morbidity rate decreases
- Vaccination rate increases Table
- Pregnancies becomes safer Table

3. Mechanisms

Business Activity and Household Income Increase

Households Gain Access to Savings Accounts and Health Insurance

Health Care Providers Gain Credit Access and Increase Supply

Introduction

Findings

Mechanism Summary

Findings

Mechanisms

RCTs Suggest That Health Insurance and Credit Access for Health Care Providers Play Larger Role

• Previous research has only looked at certain channels in isolation

- Previous research has only looked at certain channels in isolation
- Nationwide natural experiment that captures access for households, businesses, and health-care providers in a large-scale long-term setting

- Previous research has only looked at certain channels in isolation
- Nationwide natural experiment that captures access for households, businesses, and health-care providers in a large-scale long-term setting
- Bank presence improves health

- Previous research has only looked at certain channels in isolation
- Nationwide natural experiment that captures access for households, businesses, and health-care providers in a large-scale long-term setting
- Bank presence improves health
- Novel evidence on two aspects of banking
 - (a) Households gain access to health insurance
 - (b) Health care providers gain access to credit

Thank You

Kim Fe Cramer Bank Presence and Health

For any questions or comments please contact

kfc2118@columbia.edu www.kimfecramer.com ♥ @KimFeCramer

Historical Context

- 1969, 1980: Nationalization of banks
- 1979-today: Priority sectors
- 1977-1990: 1:4 Branch licensing policy (Burgess and Pande, 2005)
- 1991-2004: No branch licensing policy
- 2005-today: Branch licensing policy (Young, 2020)

Burgess and Pande (2005)

- Utilize RBI branch licensing policy in place from 1977 to 1990
- To obtain a license for a branch in a location with one or more branches ("banked"), the bank must open branches in four eligible unbanked locations (1:4)
- Instruments: deviations between 1977-1990 and post-1990 from pre-program linear trend relationship between state's initial financial development and rural branch expansion
- Identification assumption: other state-specific variables did not exhibit similarly timed trend reversals
- Mechanisms: deposit mobilization and credit disbursement (later paper: increased bank borrowing among the poor)
- Outcomes: state-level headcount poverty ratio and agricultural wage

Survey Implementation Nationwide and Balanced Around Cutoff

No Manipulation of Ratio Around the Cutoff

McCrary (2008) Test: Do not reject smoothness, p-value 0.84 Back

No Discontinuities Before the Policy

All observations		Within bandwidth		RDD	
Treated (1)	Not treated (2)	Treated (3)	Not treated (4)	Coefficient (5)	
6.38	6.57	6.42	6.51	-0.01	
(0.42)	(0.42)	(0.43)	(0.42)	(0.05)	
(0.32)	(0.32)	(0.33)	(0.32)	(0.03)	
0.50	0.42	0.50	0.45	0.00	
(0.50)	(0.49)	(0.50)	(0.50)	(0.10)	
0.11	0.12	0.12	0.12	0.00	
(0.31)	(0.32)	(0.33)	(0.32)	(0.03)	
3.87	2.38	3.65	3.03	(0.86)	
(4.40)	(4.08)	(4.47)	(4.33)	(0.80)	
(0.14)	(0.18)	(0.15)	(0.15)	(0.01)	
0.53	0.40	0.48	0.41	-0.06	
(0.50)	(0.49)	(0.50)	(0.49)	(0.06)	
0.86	0.61	0.75	0.64	-0.11	
(0.97)	(0.89)	(0.94)	(0.90)	(0.13)	
0.41	0.30	0.33	0.34	-0.11	
(0.49)	(0.46)	(0.47)	(0.48)	(0.08)	
0.58	0.42	0.45	0.48	-0.19	
(0.84)	0.20	0.16	0.18)	(0.14)	
(0.51)	(0.49)	(0.50)	(0.49)	-0.08	
(0.00)	(0.49)	(0.00)	(0.45)	(0.00)	
1.68	1.25	1.57	1.32	_0 14	
	$\begin{tabular}{ c c c c c } \hline All ob \\ \hline Treated (1) \\ \hline Treated (1) \\ \hline State (0,42) \\ 5.81 \\ (0.32) \\ \hline State (0,50) \\ 0.50 \\ (0.50) \\ 0.02 \\ (0.14) \\ \hline State (0,50) \\ 0.86 \\ (0.97) \\ 0.41 \\ (0.49) \\ 0.58 \\ (0.84) \\ 0.51 \\ (0.50) \\ \hline \end{array}$	$\begin{tabular}{ c c c c } \hline All observations \\ \hline \hline Treated & Not treated \\ \hline (1) & (2) \\ \hline \\ $	$\begin{tabular}{ c c c c c } \hline All observations & Within \\ \hline \hline Treated (1) (2) (3) \\ \hline \hline Treated (1) (2) (3) \\ \hline \hline \\ \hline $	$\begin{tabular}{ c c c c c c } \hline All observations & Within bandwidth \\ \hline \hline Treated & Not treated & Treated & Not treated \\ \hline (1) & (2) & (3) & (4) \\ \hline \hline \\ \hline $	

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012).

No Discontinuities Before the Policy

	1990	1991	1998	2001	2003	2004	2005
Nightlights							
Total light (log)			-0.03 (0.28)	$\begin{array}{c} 0.05 \\ (0.31) \end{array}$	-0.00 (0.30)	-0.13 (0.29)	-0.06 (0.29)
Economic Census							
Empl. (log no.)	-0.16 (0.25)		-0.04				0.07 (0.13)
Empl. manuf. (log no.)	-0.05 (0.19)		-0.04 (0.14)				0.02 (0.16)
Empl. services (log no.)	-0.16 (0.24)		0.03 (0.11)				0.06 (0.13)
Population Census							
Pop. (log no.)		0.01 (0.11)		-0.00			
Pop. rural (log no.)		0.01 (0.10)		0.00 (0.10)			
Pop. urban (log no.)		-0.11 (0.08)		-0.06 (0.08)			
Pop. literate (log no.)		-0.05 (0.14)		-0.07 (0.11)			
Tar road (yes/no)		-0.08 (0.07)		$0.04 \\ (0.06)$			

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data SHRUG.

Negligible Migration Due to Treatment

• Concern: Households move in response to policy to treatment districts. These households are healthier and as a result we measure improved health in treatment districts

	Moved from other
	district to current one
	in past 5 years
	(yes/no)
	(1)
Treated	0.01
	(0.00)
Control Mean	0.00
Change (%)	284.06
First Stage	0.54
Bandwidth	1,633
Efficient Obs.	8,104
Observations	34,415

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012).

- Only 0.5 percent of households have moved from another district to their current district in the past five years
- They are not significantly more likely to have done so in treatment districts

Other Policies Do Not Confound Results

	Priority districts				
	NHM (yes/no) (1)	ICDS (yes/no) (2)	ISSNIP (yes/no) (3)	NREGA (1st wave) (yes/no) (4)	NREGA (2nd wave) (yes/no) (5)
Treated	$\begin{array}{c} 0.21 \\ (0.20) \end{array}$	-0.14 (0.19)	-0.23 (0.19)	-0.25 (0.23)	-0.02 (0.25)
Control Mean	0.18	0.25	0.15	0.16	0.24
Change (%)	118.66	-57.84	-152.46	-151.04	-8.59
First Stage	0.70	0.77	0.78	0.70	0.67
Bandwidth	2,671	4,160	4,595	2,706	2,290
Efficient Obs.	176	260	290	181	151
Observations	581	581	581	581	581
Baseline Control	No	No	No	No	No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data Ministry of Health and Family Welfare, Ministry of Women and Child Development, Ministry of Rural Development.

• Other policies are not significantly more likely to be implemented in treatment districts

Placebo Type of Banks Shows No Reaction to the Policy

	1 0st-poncy (2010)		
	Branch licenses (log no.) (1)	Branches (log no.) (2)	
Treated	-0.54 (0.48)	-0.08 (0.48)	
Control Mean	1.39	1.05	
Mean Change (%)	-41.94	-7.63	
Bandwidth	2,812	2,959	
Efficient Obs.	187	195	
Observations	561	561	
Baseline Control	Yes	Yes	

Post-policy (2010)

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data RBI Master Office File. District-level analysis. The variable from 1997 is included as a baseline control. Only regional rural banks are analyzed.

Private Banks Who Experienced Strong Growth React More Strongly

	Branch Licenses (log no.) (1)	Branches (log no.) (2)	
Treated	0.54^{***} (0.16)	0.47^{***} (0.17)	
Control Mean	2.44	2.52	
Mean Change (%)	72.30	59.95	
Bandwidth	2,957	2,963	
Efficient Obs.	193	195	
Observations	561	561	
Baseline Control	Yes	Yes	

Post-Policy (2010)

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data RBI Master Office File. District-level analysis. The variable from 1997 is included as a baseline control. Only private banks are analyzed.
Private Banks Report More Credit

(a) Private Bank Deposit (Dynamics)

(b) Private Banks Credit (Dynamics)

Are Banks Opened in Treatment Districts Profitable?

- I will show you that bank presence improves household welfare
- Banks are concerned with their profitability
- Data on branch profitability in India not publicly available
- Banks indeed react to the policy, suggesting that opening branches in treatment districts plus obtaining an additional license is profitable
- What are the costs of the policy remains an open question

Policy Change in 2010

- In 2010, the RBI allowed branch openings without licenses in *underbanked states*, which have a population-to-branch ratio larger than the national average
- This attenuated the difference between underbanked and banked districts in underbanked states
- We thus see that the difference in number of branches overall decreases
- Importantly, underbanked districts have been exposed historically to more branches

Back

• Concern: Households move in response to policy to treatment districts. These households are healthier and as a result we measure improved health in treatment districts

• Concern: Households move in response to policy to treatment districts. These households are healthier and as a result we measure improved health in treatment districts

	Moved from other
	district to current one
	in past 5 years
	(yes/no)
	(1)
Treated	0.01
	(0.00)
Control Mean	0.00
Change (%)	284.06
First Stage	0.54
Bandwidth	1,633
Efficient Obs.	8,104
Observations	34,415
Baseline Control	No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012).

• Concern: Households move in response to policy to treatment districts. These households are healthier and as a result we measure improved health in treatment districts

	Moved from other
	district to current one
	in past 5 years
	(yes/no)
	(1)
Treated	0.01
	(0.00)
Control Mean	0.00
Change (%)	284.06
First Stage	0.54
Bandwidth	1,633
Efficient Obs.	8,104
Observations	34,415
Baseline Control	No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012).

• Only 0.5 percent of households have moved from another district to their current district in the past five years

• Concern: Households move in response to policy to treatment districts. These households are healthier and as a result we measure improved health in treatment districts

	Moved from other
	district to current one
	in past 5 years
	(yes/no)
	(1)
Treated	0.01
	(0.00)
Control Mean	0.00
Change (%)	284.06
First Stage	0.54
Bandwidth	1,633
Efficient Obs.	8,104
Observations	34,415
Baseline Control	No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012).

- Only 0.5 percent of households have moved from another district to their current district in the past five years
- They are not significantly more likely to have done so in treatment districts

Other Policies Do Not Confound Results

Concern: I mistake discontinuities in health outcomes around the cutoff for the effect of the RBI policy, while they actually stem from other policies

• No other policy that uses the same assignment rule

Other Policies Do Not Confound Results

Concern: I mistake discontinuities in health outcomes around the cutoff for the effect of the RBI policy, while they actually stem from other policies

- No other policy that uses the same assignment rule
- There could be other polices that by incidence are significantly more likely to be implemented in treatment districts
- Discontinuity in implementation is key, otherwise the impact of the policy would be smooth around the cutoff

1. Ministry of Health and Family Welfare

- National Health Mission (NHM) (2013)
 - Multiple activities, e.g. a safe motherhood program
 - 184 priority districts by composite health index

1. Ministry of Health and Family Welfare

- National Health Mission (NHM) (2013)
 - Multiple activities, e.g. a safe motherhood program
 - 184 priority districts by composite health index

2. Ministry of Women and Child Development

- Integrated Child Development Services (ICDS) (2012/2013)
 - $-\,$ E.g. food and immunization for children below 6 and mothers
 - 200 priority districts by under nutrition measures

1. Ministry of Health and Family Welfare

- National Health Mission (NHM) (2013)
 - Multiple activities, e.g. a safe motherhood program
 - 184 priority districts by composite health index

2. Ministry of Women and Child Development

- Integrated Child Development Services (ICDS) (2012/2013)
 - E.g. food and immunization for children below 6 and mothers
 - 200 priority districts by undernutrition measures
- ICDS Improvement Program (ISSNIP) (2012)
 - Shift focus of ICDS to younger children
 - 162 priority districts by undernutrition measures

1. Ministry of Health and Family Welfare

- National Health Mission (NHM) (2013)
 - Multiple activities, e.g. a safe motherhood program
 - 184 priority districts by composite health index

2. Ministry of Women and Child Development

- Integrated Child Development Services (ICDS) (2012/2013)
 - E.g. food and immunization for children below 6 and mothers
 - 200 priority districts by under nutrition measures
- ICDS Improvement Program (ISSNIP) (2012)
 - Shift focus of ICDS to younger children
 - 162 priority districts by undernutrition measures

3. Ministry of Rural Development

- National Rural Employment Guarantee Act (NREGA) (2005)
 - Guaranteed employment for 100 days
 - 200 priority districts in wave 1 and 2 respectively by development index

Smoothness in Financial Access Pre-Policy

	Any loan (yes/no) (1)	Largest loan amount (log Rs) (2)	Largest loan from bank (yes/no) (3)	Health insurance (yes/no) (4)
Treated	0.00	0.12	-0.00	0.01
	(0.10)	(0.86)	(0.03)	(0.01)
Control Mean	0.45	3.03	0.11	0.02
Change (%)	0.24	13.22	-2.81	55.55
First Stage	0.69	0.69	0.71	0.68
Bandwidth	2,950	2,947	4,322	3,086
Efficient Obs.	16,402	14,893	21,224	16,057
Observations	36,913	33,825	37,052	35,204
Baseline Control	No	No	No	No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS I (2005/2011). Household-level. Data IHDS I (2004/2005). Variable in Rs is transformed to log and trimmed at the 10th and 90th percentile.

Households Use More Banking Services

Morbidity Rate Decreases

Vaccination Rate Increases

	Vaccination	Vaccination Morbidity		Health care visits		
	Vaccinated	Sick	Any	Children's		
	child	child	reason	treatment		
	(yes/no)	(yes/no)	(yes/no)	(yes/no)		
	(1)	(2)	(3)	(4)		
Treated	0.07^{*}	-0.06^{*}	-0.08^{**}	-0.02^{*}		
	(0.04)	(0.03)	(0.03)	(0.01)		
Control Mean	0.86	0.27	$\begin{array}{c} 0.29 \\ -26.84 \\ 3,287 \\ 166,756 \\ 431,148 \\ \mathrm{No} \end{array}$	0.11		
Mean Change (%)	8.34	-23.12		-22.99		
Bandwidth	2,898	3,539		3,383		
Efficient Obs.	26,117	66,658		187,208		
Observations	86,079	171,471		471,985		
Baseline Control	No	No		No		

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data DHS (2015/2016). Household-level. Data on health status is directly obtain from children-level data, missing for households without children below five. Data on health care visits is obtained from women-level data, missing for all households that do not have an eligible woman interviewed.

• Ten years after the policy, households are 8% more likely to have a vaccinated child

Back (Findings) Back (Morbidity)

Pregnancies Become Safer

		Pregnancies			
	Health care	Experienced	Experienced	Women's	
	facility delivery	miscarriage	stillbirth	treatment	
	(yes/no)	(yes/no)	(yes/no)	(yes/no)	
	(2)	(2)	(3)	(4)	
Treated	0.005^{***}	-0.010^{*}	-0.002^{*}	-0.051^{*}	
	(0.002)	(0.006)	(0.001)	(0.027)	
Control Mean	0.016	0.038	0.004	0.170	
Mean Change (%)	33.52	- 26.30	- 45.92	- 29.84	
Bandwidth	3,023	3,430	3,386	3,277	
Efficient Obs.	172,892	188,571	187,208	182,318	
Observations	471,985	471,985	471,985	471,985	
Baseline Control	No	No	No	No	

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data DHS (2015/2016). Household-level. Data on health status and health care visits is obtained from women-level data, missing for all households that do not have an eligible woman interviewed.

• Ten years after the policy, the probability of **institutional deliveries** is higher and the probability of **miscarriage or stillbirth** lower in treatment districts

Back (Findings) Back (Morbidity)

As Expected No Effect on Long-Term Diseases

	Morbidity	E	Conomic co	onsequence	s
	Illness past month	Days	Days missed		expenses
	(yes/no) (1)	(yes/no) (2)	(log no.) (3)	(yes/no) (4)	$\begin{pmatrix} \log Rs \end{pmatrix} \\ (5) \end{pmatrix}$
Treated	-0.00 (0.05)	-0.05 (0.05)	-0.02 (0.15)	$0.00 \\ (0.05)$	-0.20 (0.37)
Control Mean Mean Change (%) Bandwidth Efficient Obs. Observations Baseline Control	$\begin{array}{c} 0.39 \\ -0.96 \\ 2,189 \\ 11,716 \\ 35,103 \\ \mathrm{No} \end{array}$	0.30 -15.55 2,038 9,962 34,883 No	$\begin{array}{c} 0.59 \\ -1.57 \\ 1,934 \\ 8,697 \\ 31,426 \\ \mathrm{No} \end{array}$	0.37 0.02 2,107 10,981 35,103 No	1.67 -17.98 1,920 8,700 31,621 No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). All illnesses refer to a variety of long-term diseases including cancer, diabetes, or heart disease. Any day missed measures the number of days that the household was not able to do usual activities and had to miss work or school. All questions refer to the past 365 days.

• As expected, no effects for diseases such as cancer or diabetes

Other Policies Do Not Confound Results

	Priority districts					
	NHM (yes/no) (1)	ICDS (yes/no) (2)	ISSNIP (yes/no) (3)	NREGA (1st wave) (yes/no) (4)	NREGA (2nd wave) (yes/no) (5)	
Treated	$\begin{array}{c} 0.21 \\ (0.20) \end{array}$	-0.14 (0.19)	-0.23 (0.19)	-0.25 (0.23)	-0.02 (0.25)	
Control Moon	0.18	0.25	0.15	0.16	0.24	
Control Mean	0.18	0.23	0.15	0.10	0.24	
Change (%)	118.66	-57.84	-152.46	-151.04	-8.59	
First Stage	0.70	0.77	0.78	0.70	0.67	
Bandwidth	2,671	4,160	4,595	2,706	2,290	
Efficient Obs.	176	260	290	181	151	
Observations	581	581	581	581	581	
Baseline Control	No	No	No	No	No	

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data Ministry of Health and Family Welfare, Ministry of Women and Child Development, Ministry of Rural Development.

• Other policies are not significantly more likely to be implemented in treatment districts

Households Report Fewer Problems With Providers

	Big problem with health care providers						
	C	Quantity		Quality			
	Distance	Taking transport	No personnel	No female personnel	No drugs		
	to facility	to facility	at facility	at facility	at facility		
	(yes/no)	(yes/no)	(yes/no)	(yes/no)	(yes/no)		
	(1)	(2)	(3)	(4)	(5)		
Treated	-0.12^{***}	-0.11^{***}	-0.14^{**}	-0.20**	-0.15**		
	(0.04)	(0.04)	(0.06)	(0.08)	(0.07)		
Control Mean	0.20	0.17	0.44	0.37	0.45		
Mean Change (%)	- 57.66	-65.35	-32.39	- 54.27	- 32.35		
Bandwidth	2,053	1,922	2,216	2,258	2,015		
Efficient Obs.	34,937	34,395	41,751	42,131	34,829		
Observations	128,525	128,525	129,568	129,568	128,525		
Baseline	No	No	No	No	No		

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data DHS (2015/2016). Urban sample.

• Ten years after the policy, urban households are less likely to state that quantity and quality concerns are big problems

Stronger Reaction for Private Hospitals

	$\begin{pmatrix} \log no. \end{pmatrix}$ (1)	$\begin{pmatrix} \log no. \end{pmatrix}$ (2)	(yes/no) (3)	(yes/no) (4)
Treated	0.02^{**} (0.01)	0.84^{**} (0.36)	0.00 (.)	0.64^{*} (0.33)
Control Mean	0.02	5.27	0.00	4.41
Change (%)	87.52	16.02		14.63
First Stage	0.79	0.81	0.89	0.81
Bandwidth	2,357	3,382	72,104	3,633
Efficient Obs.	156	211	555	226
Observations	528	538	556	539
Baseline Control	No	No		No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data Economic Census (2005 and 2013). District-level. All variables measured in numbers of establishments are measured in logs and winsorized at the 1st and 99th percentile. Institutional loans likely refer to bank loans. Column 2 and 4 refer to the major source of financing.

• Stronger reactions for private hospitals that are more likely to rely on bank loans

Stronger Effects for Households with High Probability to Take Up Instruments

	Savings account		Bank	Bank loan		Health insurance	
	High	Low	High	Low	High	Low	
	Days ill	Days ill	Days ill	Days ill	Days ill	Days ill	
	(yes/no)	(yes/no)	(yes/no)	(yes/no)	(yes/no)	(yes/no)	
	(1)	(2)	(3)	(4)	(5)	(6)	
Treated	-0.29^{**}	-0.10*	-0.24^{**}	-0.12^{**}	-0.33^{***}	-0.07	
	(0.12)	(0.06)	(0.11)	(0.06)	(0.12)	(0.08)	
Control Mean	0.53	0.53	0.53	$\begin{array}{c} 0.53 \\ -23.61 \\ 0.73 \\ 2,916 \\ 5,934 \\ 13,555 \\ \mathrm{No} \end{array}$	0.53	0.56	
Change (%)	-55.10	-19.27	-45.52		- 62.55	-13.31	
First Stage	0.57	0.75	0.59		0.55	0.82	
Bandwidth	2,222	2,953	2,226		2,336	1,718	
Efficient Obs.	7,656	5,976	7,608		7,838	3,506	
Observations	23,061	13,739	23,249		22,687	13,731	
Baseline Control	No	No	No		No	No	

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS I and II (2004/2005 and 2011/2012). Household-level. Days ill refers to whether any member was ill in the past month with fever, diarrhea, or cough.

Eight Percent Increase in Consumption for Treatment Households

	$\begin{array}{c} \textbf{Total}\\ \textbf{consumption}\\ (\log\text{Rs})\\ (1) \end{array}$	$\begin{array}{c} \textbf{Food} \\ \textbf{consumption} \\ (\log \ \text{Rs}) \\ (2) \end{array}$	$\begin{array}{c} \mathbf{Meals} \\ \mathbf{per \ day} \\ (\text{no.}) \\ (3) \end{array}$	Hygiene expenses (log Rs) (4)	$\begin{array}{c} \textbf{Outpatient} \\ \textbf{expenses} \\ (\log Rs) \\ (5) \end{array}$	Inpatient expenses (log Rs) (6)
Treated	0.07^{**} (0.04)	0.06^{*} (0.03)	0.24^{**} (0.10)	$0.06 \\ (0.06)$	-0.45^{*} (0.23)	-0.14 (0.30)
Control Mean Change (%) First Stage Bandwidth Efficient Obs. Observations	7.48 7.68 0.75 4,120 14,903 21,410	$\begin{array}{c} 6.71 \\ 5.73 \\ 0.71 \\ 2.755 \\ 11.415 \\ 21.345 \\ \end{array}$	2.75 8.64 0.68 3,004 16,611 34,773	4.02 5.82 0.66 2,246 9,896 23,010	$2.73 \\ -36.06 \\ 0.70 \\ 3.793 \\ 17,418 \\ 29,182 \\ 0.76 \\ $	$ \begin{array}{r} 1.33 \\ -13.46 \\ 0.56 \\ 1.902 \\ 8.537 \\ 27.312 \\ \end{array} $

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household-level. Variables in rupees measured in log and trimmed at the 10th and 90th percentiles, expressed per capita in the past month.

• Downward pressures on medical expenses: a) people become healthier, b) people gain access to insurance, and c) prices adjust downward

Effect Size Discussion and Supplementary Evidence

- Similar effect sizes as other successful health interventions
 - Conditional cash transfers: child's probability of illness -39% (Gertler, 2004)
 - Improved water quality: child's probability of diarrhea -25% (Kremer et al., 2011)
 - Trained informal providers: child mortality -25% (Bjorkman-Nykvist et al., 2014)
 - Monitoring providers: child mortality -33% (Bjorkman & Svensson, 2009)
 - ▶ Diseases such as diarrhea often have highly effective treatments
- Replicable in other data set Table 1 Table 2
- As expected no effect for diseases such as cancer Table Back

	Bandwidth multiplier						
	0.50 (1)	$ \begin{array}{c} 0.75 \\ (2) \end{array} $	$ \begin{array}{c} 1.00 \\ (3) \end{array} $	$ \begin{array}{c} 1.25 \\ (4) \end{array} $	$ \begin{array}{c} 1.50 \\ (5) \end{array} $	1.75 (6)	$2.00 \\ (7)$
Treated	0.18^{**} (0.07)	0.23^{***} (0.06)	0.19^{***} (0.05)	0.17^{***} (0.05)	0.15^{***} (0.05)	0.13^{***} (0.05)	0.13^{***} (0.04)
Control Mean Change (%)	4.32 19.87	$4.30 \\ 25.59$	4.38 21.32	$4.31 \\ 19.05$	4.29 15.96	4.28 14.43	4.28 13.39
First Stage Bandwidth	$0.74 \\ 1.486$	0.79 2.229	0.80	0.80	$0.81 \\ 4.458$	$0.81 \\ 5.201$	$0.82 \\ 5.945$
Efficient Obs. Observations	$96 \\ 536$	$146 \\ 553$	$196 \\ 561$	$237 \\ 562$	$283 \\ 564$	$320 \\ 564$	$356 \\ 576$
Baseline Control	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Branch licenses 2010 (log no.)

 * p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data RBI. District-level

	$ \begin{array}{c} 0.50 \\ (1) \end{array} $	$\binom{0.75}{(2)}$	$ \begin{array}{c} 1.00 \\ (3) \end{array} $	$ \begin{array}{c} 1.25 \\ (4) \end{array} $	$ \begin{array}{c} 1.50 \\ (5) \end{array} $	$ \begin{array}{c} 1.75 \\ (6) \end{array} $	2.00 (7)
Treated	0.15^{*} (0.08)	0.19^{***} (0.06)	0.17^{***} (0.06)	0.14^{**} (0.06)	0.13^{**} (0.05)	0.12^{**} (0.05)	0.14^{***} (0.05)
Control Mean	4.42	4.36	4.38	4.33	4.29	4.27	4.27
Change $(\%)$	16.65	21.26	18.98	15.06	13.56	13.30	14.84
First Stage	0.72	0.79	0.80	0.81	0.82	0.82	0.83
Bandwidth	1,665	2,497	3,329	4,161	4,994	5,826	6,658
Efficient Obs.	151	185	213	240	275	299	321
Observations	548	561	561	561	563	575	575
Baseline Control	Yes	Yes	Yes	Yes	Yes	Yes	Yes

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data RBI. District-level.

 Back

	(\max) health_min_ill_d_in30_y	$(\max) health_min_ill_d_in30_y$	(r
Conventional	-0.19**	-0.13*	
	(0.09)	(0.08)	
Bias-corrected	-0.21**	-0.16**	
	(0.09)	(0.08)	
Robust	-0.21**	-0.16	
	(0.11)	(0.10)	
Control Mean	-0.19	-0.13	
Change (%)	0.09	0.08	
First Stage	-0.21	-0.16	
Bandwidth	0	0	
Efficient Obs.			
Observations			

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household-level.

	$health_min_ill_d_in30_log$	$health_min_ill_d_in30_log$	health_min
Conventional	-0.29**	-0.24*	
	(0.12)	(0.13)	
Bias-corrected	-0.36***	-0.29**	
	(0.12)	(0.13)	
Robust	-0.36**	-0.29*	
	(0.15)	(0.17)	(
Control Mean	-0.29	-0.24	
Change (%)	0.12	0.13	
First Stage	-0.36	-0.29	
Bandwidth	0	0	
Efficient Obs.			
Observations			

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household-level.

Results are Robust to Different Polynomial Degrees

	1st degree (1)	2nd degree (2)	3rd degree (3)
Treated	-0.29^{**} (0.12)	-0.35^{*} (0.19)	-0.41 (0.26)
Control Mean Change (%)			
First Stage	0.70	0.64	0.58
Bandwidth Efficient Obs.	2,658	4,040	5,942
Observations Baseline Control	32,280	32,415	33,806

 * p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household-level.

Results are Robust to Different Polynomials

	Polynomial degree			
	One (1)	Two (2)	$\begin{array}{c} \text{Three} \\ (3) \end{array}$	
Treated	0.19^{***} (0.05)	0.33^{***} (0.09)	0.46^{***} (0.14)	
Control Mean	4.38	4.30	4.28	
Change (%)	21.32	39.27	58.81	
First Stage	0.80	0.72	0.64	
Bandwidth	2,972	4,402	5,947	
Efficient Obs.	196	280	356	
Observations	561	562	576	
Baseline Control	Yes	Yes	Yes	

Branch licenses 2010 (log no.)

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data RBI. District-level.

Results are Robust to Different Polynomials

	1st degree	2nd degree	3rd degree
	(1)	(2)	(3)
Treated	0.17^{***}	0.31^{***}	0.44^{***}
	(0.06)	(0.09)	(0.14)
Control Mean Change (%) First Stage Bandwidth	0.80 3,329	$0.72 \\ 4,148$	$0.64 \\ 6,099$
Efficient Obs. Observations Baseline Control	561	562	576

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data RBI. District-level.

Limited Evidence of Discontinuities at Placebo Cutoffs

	Placebo cutoff						
	-3,000 (1)	$^{-2,000}_{(2)}$	$^{-1,000}_{(3)}$	$\begin{pmatrix} 0 \\ (4) \end{pmatrix}$	$^{1,000}_{(5)}$	$2,000 \\ (6)$	$3,000 \\ (7)$
Outcome Branch licenses (log no.) Branches (log no.)	$\begin{array}{c} 0.04 \\ 0.04 \end{array}$	$\begin{array}{c} 0.06 \\ 0.14 \end{array}$	$0.78 \\ 0.50$	$0.00 \\ 0.00$	$0.22 \\ 0.40$	$0.01 \\ 0.52$	$0.92 \\ 0.87$

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data RBI. District-level.

Results are Robust to Different Bandwidths and Polynomial Degrees

Back

Table Bandwidths

Table Polynomials

Multiple Hypothesis Testing

- Resources available in World Bank Blog (McKenzie, 2020)
- Three approaches
 - 1. Summary indices
 - 2. Family wise error rate (controls for a single false rejection)
 - 3. False discovery rate (controls expected proportion of rejections)
- Apply code by Anderson (2008) on false discovery rate

A Snapshot of Health Care Spending Shows No Increase

	$\begin{array}{c} \textbf{Outpatient} \\ \textbf{expenses} \\ (\log Rs) \\ (5) \end{array}$	Inpatient expenses (log Rs) (6)
Treated	-0.45^{*} (0.23)	-0.14 (0.30)
Control Mean Change (%) First Stage Bandwidth Efficient Obs	$2.73 \\ -36.06 \\ 0.70 \\ 3,793 \\ 17,418$	$1.33 \\ -13.46 \\ 0.56 \\ 1,902 \\ 8.537$
Observations Baseline Control	29,182 Yes	27,312 Yes

* p<0.1, ** p<0.05, *** p<0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household-level. Expenses monthly per capita.

• We cannot conclude that there was no increase in health care demand! Back
Challenges in Measuring Health Care Demand

- 1. **Snapshot of health care demand** at the time of the surveys is observable, not historical demand in the previous years
 - By then, households might have already improved their health status, reflected in lower health care demand

2. Medical spending is not a good proxy of health care demand

- Prices might have adjusted (unobservable)
- Insurance could have decreased households' out-of-pocket share
- ► Negative effect on medical expenses Table

Approach: Proxy health care demand by health status outcomes such as vaccination rates and risks associated with pregnancies Back

Results are Robust to Different Bandwidths and Polynomial Degrees Branches (2010)

Banks Open Branches

Banks Open Branches

Results are Robust to Different Bandwidths and Polynomial Degrees

Households Take Savings Accounts

Household Surveys Confirm Improved Health Care Supply

Urban households in treatment districts **report significantly fewer problems** with respect to

- Distance or transport to provider
- Personnel absenteeism
- Lack of drugs at facilities

Table
Back

SHRUG Details

- Socioeconomic High-resolution Rural-Urban Geographic Platform for India (SHRUG)
- Asher, S., Lunt, T., Matsuura, R., and Novosad, P. (2021)
- https://www.devdatalab.org
- Data: economic activities, population characteristics, forest cover, covid spread, ...

 Back

Income and Health in Developing Countries

- Haushofer and Shapiro (2013) examine short-term impacts (9 months) of unconditional cash transfers, they find an increase in medical expenditure but no improvement in health
- Haushofer and Shapiro (2018) study the long-term impacts (3 years) of unconditional cash transfers and find no increase in medical expenditures or improvement in health
- Egger et al. (2021) examine medium-term impacts (18 months) of unconditional cash transfers amounting to a fiscal shock of 15% of the local GDP and find no improvement in health

Potential explanations

- 1. Don't spend more on health (unlikely, Haushofer and Shapiro, 2013)
- 2. They spend more, but supply doesn't adjust because too few households get transfers (unlikely, Egger et al., 2019)
- 3. Many households spend more, but supply adjust slowly
- 4. Many households spend more, but supply is inelastic

Income and Health in Developed Countries

- Strong positive correlation between income and health (Curtler et al., 2011)
- Studies that look at lottery winners find no positive relationship on adult or child health (Cesarini et al., 2016; Apouey and Clark, 2015)

Banks Offer Health Insurance in Other Developing Countries

Minor Evidence That Less Branches in Control Group This is No Identification Threat (Just Makes the Discontinuity in Branches Larger)

• Considering a typical bandwidth of $\pm 3,000$

- Conditional cash transfers reduces probability of illness for children by 39% (Gertler, 2004)
- Monitoring health care providers reduces child mortality by 33% (Bjorkman and Svensson, 2009)

- Conditional cash transfers reduces probability of illness for children by 39% (Gertler, 2004)
- Monitoring health care providers reduces child mortality by 33% (Bjorkman and Svensson, 2009)
- Diseases such as diarrhea often have highly effective treatments (Duflo and Banerjee, 2011)

- Conditional cash transfers reduces probability of illness for children by 39% (Gertler, 2004)
- Monitoring health care providers reduces child mortality by 33% (Bjorkman and Svensson, 2009)
- Diseases such as diarrhea often have highly effective treatments (Duflo and Banerjee, 2011)

Supplementary evidence

• Replicable in other data set Children Women

- Conditional cash transfers reduces probability of illness for children by 39% (Gertler, 2004)
- Monitoring health care providers reduces child mortality by 33% (Bjorkman and Svensson, 2009)
- Diseases such as diarrhea often have highly effective treatments (Duflo and Banerjee, 2011)

Supplementary evidence

- Replicable in other data set Children Women
- No effect for diseases such as cancer Table

 Back

Banks Open Branches

Health-Related Economic Outcomes Improve

	Days missed work/school due to illness		Medical expenses past month	
	(yes/no) (1)	(log no.) (2)	(yes/no) (3)	$\begin{pmatrix} \log Rs \end{pmatrix} \\ (4) \end{pmatrix}$
Treated	-0.30^{***} (0.10)	-0.44^{***} (0.13)	-0.18^{**} (0.08)	-0.88** (0.35)
Control Mean Mean Change (%) Bandwidth	$0.41 \\ -71.46 \\ 2,331$	0.58 -35.40 2,513	$0.52 \\ -33.61 \\ 2,373$	2.12 - 58.56 2,948
Efficient Obs. Observations Baseline Control	12,730 36,805 No	12,421 33,346 No	12,862 36,805 No	14,576 32,983 No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household-level.

• Six years after the policy, households miss **half a day** per month less of work or school due to an illness and spend significantly less on medical expenses

Eliminating Other Concerns

- 1. Households move to treatment districts. If those who move are healthier, I confuse their characteristics with a treatment effect of the policy
 - Only 0.5% of households migrated to current district since policy
 - ▶ Migration not significantly more likely to treatment districts Table
- 2. I mistake discontinuities around the cutoff for the effect of the RBI policy, while they actually stem from other policies
 - ▶ No policy that uses the same cutoff
 - Other policies are not significantly more likely to be implemented in treatment districts Table

Geographical Distribution Within Typical Bandwidth

199 districts in typical bandwidth ($\pm 3,000$) (56% underbanked)

Map without bandwidth State Comparison Map

Households Have Higher Consumption and Spend More on Food

	$\begin{array}{c} \textbf{Total}\\ \textbf{consumption}\\ (\log\text{Rs})\\ (1) \end{array}$	$\begin{array}{c} \textbf{Food} \\ \textbf{consumption} \\ (\log \ \text{Rs}) \\ (2) \end{array}$	Meals per day (no.) (3)	Hygiene expenses (log Rs) (4)
Treated	0.07^{**} (0.04)	0.06^{*} (0.03)	0.24^{**} (0.10)	$0.06 \\ (0.06)$
Control Mean Mean Change (%) Bandwidth Efficient Obs. Observations Baseline Control	7.48 7.68 4,120 14,903 21,410 Yes	6.71 5.73 2,755 11,415 21,345 Yes	$2.75 \\ 8.64 \\ 3,004 \\ 16,611 \\ 34,773 \\ Yes$	4.02 5.82 2,246 9,896 23,010 Yes

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household-level. Consumption measures monthly per capita.

• Six years after the policy, household in treatment districts have 8 percent higher consumption and spend more on food

Top 10 Banks in India Offer Health Insurance

Family Health Optima Insurance Plan

Other Developing Countries Back

2

Households Take Up Savings Accounts and Health Insurance

	Savings	Bank	Health
	account	loan	insurance
	(yes/no)	(yes/no)	(yes/no)
	(1)	(2)	(3)
Treated	0.19^{*} (0.10)	$ \begin{array}{c} 0.04 \\ (0.05) \end{array} $	0.17^{**} (0.07)
Control Mean	$\begin{array}{c} 0.51 \\ \textbf{36.48} \\ 3,023 \\ 16,674 \\ 36,786 \\ \text{No} \end{array}$	0.23	0.06
Mean Change (%)		19.70	272.69
Bandwidth		2,370	1,704
Efficient Obs.		12,856	8,482
Observations		36,785	34,181
Baseline Control		No	No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS II (2011/2012). Household-level.

- Six years after the policy, households are 36% more likely to have a savings account and 273% more likely to own health insurance in treatment districts
- Other studies show that savings accounts alone are not likely to drive major welfare changes (Dupas et al., 2018)

Smoothness Pre-Policy Back

Households Take Up Health Insurance

(a) **Pre:** Health Insurance (Yes/No)

(b) Post: Health Insurance (Yes/No)

Savings Accounts Back

Practitioners Suggest That Banks Finance Health Care Providers

"The banks financed the doctors, the instruments, ... new small hospitals opened up."

Yash Pratap Bhatiya, Chief Manager, working at Oriental Bank of Commerce from 1980 to 2019

Health Care Providers Gain Credit Access and Improve Supply

	Pre-policy (2005)		Post-poli	cy(2013)
	Hospitals mainly financed by instit. loan (%) (1)	Number of hospitals (log no.) (2)	Hospitals mainly financed by instit. loan (%) (3)	Number of hospitals (log no.) (4)
Treated	$0.001 \\ (0.012)$	-0.15 (0.16)	0.010^{**} (0.004)	0.88^{***} (0.33)
Control Mean Mean Change (%) Bandwidth Efficient Obs. Observations Baseline Control	0.032 4.62 2,638 171 538 No	5.42 -13.96 4,328 268 539 No	0.014 67.77 2,435 163 538 No	5.96 140.07 3,127 201 538 No

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data Economic Census (2005 and 2013). District-level.

- Eight years after the policy, treatment districts have a higher fraction of hospitals financed mainly by institutional loans and **140 percent more hospitals** (control mean 31 hospitals per 100,000 people)
- Household surveys confirm improved health care supply Table
- IA Mechanism Summary

Health Care Providers Gain Credit Access and Improve Supply

Smoothness Before the Policy

Banks Open Branches

	Pre-policy (2004)		Post-policy	(2010)
	Branch licenses	Branches	Branch licenses	Branches
	(log no.)	(log no.)	(log no.)	(log no.)
	(1)	(2)	(3)	(4)
Treated	$ \begin{array}{c} 0.02 \\ (0.02) \end{array} $	$\begin{array}{c} 0.01 \\ (0.02) \end{array}$	0.19^{***} (0.05)	0.17^{***} (0.06)
Control Mean	$\begin{array}{c} 4.00 \\ 1.81 \\ 3,490 \\ 223 \\ 561 \\ \mathrm{Yes} \end{array}$	3.98	4.38	4.38
Mean Change (%)		1.01	21.32	18.98
Bandwidth		3,621	2,972	3,329
Efficient Obs.		230	196	213
Observations		562	561	561
Baseline Control		Yes	Yes	Yes

* p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data RBI Master Office File. District-level. The variable from 1997 is included as a baseline control.

• Five years after the policy, banks have **19% more branches** in treatment districts (control mean 7 branches per 100,000 people)

Robustness Placebo Bank Type Stronger Reaction for Private Banks Back

Banks Open Branches

Dynamics Correspond to Policy Timing

Smoothness Pre-Policy

	1 ie i oliej (2004/2000)			
	Days ill (non-chronic) (log no.) (1)	Days missed due to illness (log no.) (2)	Medical expenses (log Rs.) (3)	
Treated	-0.11 (0.13)	-0.19 (0.14)	-0.14 (0.27)	
Control Mean Mean Change (%) Bandwidth Efficient Obs	$0.64 \\ -10.49 \\ 3,418 \\ 15,574$	$0.48 \\ -17.68 \\ 2,524 \\ 12,122$	$1.32 \\ -13.03 \\ 3,566 \\ 16,019$	
Observations	31,375	32,442	31,812	

 $Pro_{-}Policy (2004/2005)$

 * p <0.1, ** p <0.05, *** p <0.01. Standard errors in parentheses. Data IHDS I (2004/2005). Household level.

Morbidity Rate Decreases

Morbidity Rate Decreases

Morbidity Rate Decreases

Papers Using Same or Similar Policy

- First paper that combines this policy with household data
- Young (2020) uses same policy examining economic activity
- Burgess and Pande (2005) use similar policy from 1977 but different outcome (poverty), design (IV), and state-level data Details