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Abstract 

The distributions of the first passage time for the S&P CNX Nifty and its 50 

constituent stocks are examined. Numerical analysis shows the ‘optimal’ investment 

horizon at 5% return level is about 15 days for the index and is most frequently 

distributed at seven days (range: 5 to 15 days) for the 50 constituent stocks. This suggests 

a complex dynamics between the index and its constituents in terms of feedback and 

feed-forward loops. We also examine the distribution of first passage times for six world 

indices, the Dow Jones Industrial, Hang Seng, FTSE, SSEC, Kospi and the Nikkei. These 

range between 13 days (for the Kospi) to 47 days for the FTSE. Two distinct regimes, for 

both positive and negative returns) are observed in the evolution of the optimal 

investment horizon over different return levels. 
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Optimal investment horizons for S&P CNX Nifty and its components 

Stochastic finance is a relatively recent field. It was not until 2000 that the full 

complexity of financial markets was recognized and documented [1,2]. In this paper, we 

study the distribution of first passage times for the S&P CNX Nifty, and its 50 constituent 

stocks. The concept of the ‘first passage time (FPT)’ follows from the ‘first passage 

problem’ in the mathematical literature.  

The first passage time can be defined as the time at which the observation of any 

process first reaches a particular threshold or barrier. First passage times have been 

widely used in biological contexts (e.g., time when the size of a population first reaches a 

threshold of sustainability or unsustainability), and in the physical sciences, particularly 

early in turbulence studies in fluids and gases (the time when a flow makes the transition 

between smooth to turbulent, and vice versa) [1,2,3,5,6]. 

Physicists’ interest in financial markets follows naturally from their interest in 

disordered systems, and complexity. The intricate character of financial markets has been 

one of the main motives for the physicist community’s interest in the study of the 

statistical and dynamical properties of traded asset markets. This has blossomed into the 

emerging interdisciplinary field of Econophysics, which applies statistical physics and 

complex system theories to economics [1-7]. A close analogy between financial markets 

and turbulence in fluids and gases has been proposed [2,7].  

In traded asset markets, the FPT can be extended to the time when an index or an 

asset price first reaches a pre-set level. Clearly, the distribution of time intervals may 

have important information about the markets and it is worthwhile for us to investigate 

these properties extensively [8]. 
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In [9,10], the first passage time in traded markets has been discussed from a 

statistical physics perspective. In [12], this perspective was extended to a general market 

user/trader’s view by asking the question: “What is the typical time span needed to 

generate a fluctuation or a movement (in the price) of a given size?” Obviously, the 

‘waiting time’, which is the time before the object of observation will first cross the 

threshold, will follow a probabilistic distribution. The authors in [11], with a background 

in the physics of turbulent fluids, proposed to call this statistic an ‘inverse statistics’. 

Such ‘inverse statistics’ of the FPT were reported for the Dow Jones Industrial Average 

in [13-15] and in the foreign exchange markets [16]. A compact summary of this field 

can be found on the website of one of the authors.1 

The rest of the paper is organized as follows. In Section I, we list the implications 

of this study, from a trader/market user’s perspective. In Section II, we present a (non)-

exhaustive survey of the literature, followed by methodology in Section III. The main 

observations and results are presented in Section IV, and Section V concludes 

I. Implications  

The implications of the proposed study are manifold, and will be useful for 

understanding the microstructure of the Indian equity markets. Though in the realm of a 

probability distribution, an insight into the distribution of first passage time is key to 

timing trades, and by extension, to determining the risk of a trade. Investors may find 

such an understanding useful in formulating capital and asset allocation strategies, as well 

as tuning entry and exit strategies. Further, a deeper understanding of the probability 

                                                 
1 I. Simonsen,  http://web.phys.ntnu.no/~ingves/Science/Research/ 
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distribution has great significance for traders in options, on the index and in the 

constituent stocks, and for refining stop loss strategies. 

Studies of the first passage time (and its complementary measures, the waiting 

time and the optimal investment horizon) are important from an economic point of view 

in several ways. To quote [11]: 

“Firstly, say an investor plans to sell or buy a certain asset. Then, of course, he or 

she is interested in doing the transaction at a point in time that will optimize the 

potential profit, i.e. to sell for the highest possible price, or, for a buyer, to buy for 

the lowest price. However, the problem is that one does not know when the price 

is optimal. Therefore, the best one can do, from a statistical point of view, is to 

make a transaction at a time that is probabilistically favorable. This optimal time, 

as we will see, is determined by the maximum of the first passage time 

distribution, i.e. the most likely first passage time.  

Secondly, for a holder of an European type option, either a call or a put of given 

strike price, the most likely first passage time will, in much the same way as 

presented above, define the optimal maturity of the option. Furthermore, for an 

American type call option the most likely first passage time of the underlying 

asset will be useful to know when to exercise the option. These same arguments 

apply even more to exotic options used in the financial industry.  

Thirdly, the investment distribution for negative levels of returns, provides crucial 

information for the implementation of certain stop-loss strategies.  
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Finally, but not least, the first passage distribution will by itself give invaluable, 

non-trivial information about the stochasticity of the underlying asset price.” 

Unquote 

No such study has been conducted on the Indian equity or foreign exchange 

markets, and therefore, the proposed study for the cash segment of the Indian equity 

markets should be interesting for all market participants. From an Indian equity markets 

perspective, we wish to add the following tentative applications of the proposed study: 

Market development: The results of the proposed study may be useful to fine tune 

the tenor of contracts or even introduce new products in the futures and options segment 

with varying maturity profiles. Such products, traded or synthetic, can be closely aligned 

to the optimal investment horizon. At a macro level, panel studies (as in [17]) may 

provide clues to the stage of development of the markets. This may come in handy while 

arguing for the introduction of equity market products and services. 

Investor interest: Investors will find this study potentially useful and reassuring. 

As noted earlier, in terms of negative returns, investors can build and operate flexible 

stop loss strategies or contrarian strategies to minimise the loss. Active investors may 

find it more profitable to explore networks of securities (with or without the index) to 

maximise return over their preferred investment horizon. This may, however, require an 

active trading/portfolio realignment strategy. In [38], concepts of entropy transfer have 

been applied to information flows between stocks and the index, and between networks 

of indices. 
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Exotic options pricing: The limitations of the Black-Scholes model for pricing 

options are well documented. Stochastic volatility (SV) models are computationally 

demanding. Such models also require a delicate calibration procedure to tune the 

parameters to market dynamics. To get around this problem, a few ad hoc models have 

been proposed, wherein an analytically derived adjustment for the convexity (“Volatility 

smile”) is made to the theoretical (Black-Scholes) prices. One such model is the  

Vanna-Volga model which specifically takes into account the survival probability and the 

first exit time [18, 19]. 

In this case, the first exit time is defined as the minimum between: (i) the time in 

the future when the underlying price is expected to exit a barrier zone before maturity, 

and (ii) maturity, if the underlying price has not hit any of the barrier levels up to 

maturity. The current study on first passage times can be used in modeling ‘exit times’ 

and inversely, in setting up the barrier levels. 

 
II. Literature Survey  

It may be useful to trace some history of modern financial economics and 

stochastic finance. Writing his doctoral thesis in 1900, ambitiously on a theory of 

speculation, a French scientist, Louis Bachelier, proposed a random walk hypothesis for 

price trajectories [20]. This is perhaps the single most influential starting point in our 

attempts at understanding the layers of complexity in traded asset prices. A random walk 

is a path composed of many independent, random steps. The path of a microscopic 

particle suspended in a viscous fluid is seemingly a random walk process, technically 

called a Brownian motion, after the Scottish Botanist Robert Brown. Bachelier assumed 

stock price dynamics as a Brownian motion without drift. While building up this thesis, 
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Bachelier also happened to derive most of the theory of a diffusion processes, ironically, 

five years before Einstein’s classic paper [21]. 

Now, if a number of walkers start walking randomly (in two dimensional space) 

from a starting point, their final locations after a fixed time will typically follow a 

Gaussian distribution: the famous bell-shaped curve. Bachelier has been credited with 

working out the first-passage distribution function for such a drift-free Brownian motion 

case. Later, this work became celebrated in the literature on kinetic theory of gases [22]. 

Despite its robust beginnings, studies on first passage times seem to have fallen 

into disrepute, for being either too theoretical or too naive. The last two decades has seen 

a rapid explosion in the application of this concept in diverse fields, such as Biology [23], 

population studies [24], neural sciences [25], engineering mechanics [26], insurance [27], 

in turbulence studies [28-33] and in finance. 

In studies on turbulent flows in fluids, the first attempt was made in [11] to invert 

the standard paradigm of measuring velocity difference against distance. To quote: 

“We propose an alternative formulation of structure functions for the velocity field in fully 

developed turbulence. Instead of averaging moments of the velocity differences as a function 

of the distance, we suggest to average moments of the distances as a function of the velocity 

difference. This is like an ‘inverted’ structure function, with a different statistics.” 

In a seminal paper [12], the authors aligned the theoretical literature closer to the 

practical utility in the financial markets by asking the following ‘inverse’ question: 

“What is the typical time span needed to generate a fluctuation or a movement (in the 

price) of a given size by, say, 10%?” This is further explained as “Given a fixed log-

return barrier, ρ , of a stock or an index as well as a fixed investment date, the 



 8

corresponding time span is estimated for which the log-return of the stock or index for 

the first time reaches the level ρ . This can also be called the first passage time through 

the level (or barrier) ρ . Correspondingly, the time which the index or stock return spends 

between a pre-set level and the return to that level is called the waiting time.” [12]  

Specifically in the financial markets, the Dow Jones Industrials (DJIA) in the US 

has been extensively studied in refs. [12-15]. Similar studies have been reported on the 

foreign exchange markets [16], and on the (German) bond and Italian government bonds 

[34-36] traded on the for London International Financial Futures and Options Exchange 

(LIFFE). 

In [17], the authors considered a large sample of 40 equity exchange indices 

around the world, while focusing their attention on the characteristic optimal horizons of 

the Shanghai Stock Exchange Composite, A Share Index, B Share Index, and 55 stocks 

listed in Shanghai Stock Exchange and Shenzhen Stock Exchanges. The ambitious scope 

of this study opened a subsidiary research interest in the nature of the markets: mature 

versus emerging, investment oriented versus speculative. 

III. Methodology 

With a defined investment date t , define a level of expected returns as tρ . This 

generic definition includes positive returns +
tρ  and negative returns −

tρ . The first 

passage problem can, therefore, be stated as identifying the time ρτ  at which the returns 
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first cross the threshold of tρ
2. It will be useful to define the (log) returns of the series 

between investment time t and τ  (dropping the subscript ρ ): 

)ln()ln( tt ssr −= +ττ         (1) 

For the time series of interest, and a constant level of expected returns ( tρ ), one 

obtains a distribution of first passage times ( ρτ ) such that tr ρτ ≥ . The maxima of this 

distribution indicates the highest frequency of occurrence, and is defined as the optimal 

investment horizon. 

The time series of the S&P Nifty and its 50 individual component stocks is 

available in the public domain. The stock price series were adjusted for stock splits, 

dividends and bonuses etc. The S&P CNX Nifty series was taken for the period January 

02, 1995 to April 29, 2009 (both inclusive), leading to 3574 data points. Only 24 of the 

constituent stocks have been in the index since the beginning of the study period. The 

other 26 were taken from the date they were included in the index. 

As can be seen from Chart 1, the time series of the index shows a distinct upward 

drift, particularly pronounced after July 01, 2003. This drift, which reflects general 

market moods (such as a bull phase or a bear phase), needs to be removed. A de-trended 

time series would, therefore, strip the original series of market-wide variables, while 

retaining only the index (stock) specific variables, which are of interest to us.  

The drift component can be removed in many ways, the easiest being to remove a 

moving average from the time series. Alternatives could be a geometric mean or a 

                                                 
2 It must be stressed that the returns are not a summation of the daily returns, over all days, leading to ρτ . 
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suitably defined local function. However, the choice of a function and the local window 

size to which it is localized is arbitrary, and cannot be defended on a priori grounds.  

In recent years, wavelet transforms have emerged as the vehicle of choice. The 

underlying logic is that a time series can be hierarchically decomposed into several levels 

of wavelets (small waves). We define a sequence of resolutions labeled by the integer j 

such that all details of the signal on scales smaller than are suppressed at resolution . 

More and more details are removed as the resolution gets coarser and coarser3. 

Correspondingly, as the resolution gets finer and finer, it is possible to recover the entire 

function space [37]. The decomposition of the original Nifty series at various levels is 

illustrated in Chart 2. 

The time series of the index (S&P CNX Nifty) and each of its constituent stocks 

is detrended as discussed above, with a choice of decomposition levels. The original 

series of the index is presented in Chart 3, with an overlay of the trend, and the detrended 

series in the lower plate. 

In the second step, a threshold is set, say at 5% or 10%. The choice of a starting 

threshold is arbitrary, but should not be set too low (when it will capture only the noise in 

the system). The threshold should not be set too high, because the relative lesser numbers 

of qualifying events will defeat the purpose of obtaining a distribution. 

Next, a probability distribution for the set threshold return is drawn from the data. 

The peak of this distribution is the optimal investment horizon for the series (index or 

stock). 

                                                 
3 Interested readers may refer to the Wolfram Research Inc. (Mathematica) website for an accessible 
introduction to wavelets 
http://documents.wolfram.com/applications/wavelet/FundamentalsofWavelets/1.1.html 
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IV. Results and analysis 

To present the numerical results of this study, we set the expected returns ( tρ ) at 

± 5% (or 0.05). The distribution of the first passage time for the S&P CNX Nifty for both 

positive and negative returns, set at 5% is presented in Chart 4. The distribution shows a 

well defined maxima at close to 15 days for +5% returns and seven days for -5% returns, 

and an extended tail, which implies a non-zero probability at large times. Note also that 

the distribution of the negative returns at 5% is shifted to the left of the return for positive 

returns in the region left of 100 days (the x-axis is logarithmic scaled). This implies that a 

fall in the index happens at a quicker pace than a rise of the same percentage. 

For completeness, we have also considered the Dow Jones Industrial Average 

(DJIA) for the period October 01, 1928 to April 30, 2009, the Hang Seng (from 

December 31, 1986 to April 30, 2009), the Kospi (July 01, 1997 to April 30, 2009), the 

FTSE (April 02, 1984 to April 30, 2009), China’s SSEC (from Jan 04, 2000 to April 30, 

2009), and the Nikkei 225, from Jan 04 1984 to April 30, 2009. The time series were 

obtained from the Yahoo finance website. The distributions are illustrated in Chart 5a, 

and the maxima of the distribution, corresponding to optimal investment horizons, are 

reported in Table 1. The distributions show a similar well-defined maxima, with the 

peaks distributed between 13 days for the Kospi and 47 days for the FTSE-100. For the 

DJIA, we find a maxima at 39 days, whereas [12] reported approximately 15 days. The 

distributions are plotted on a log-log scale in Chart 5b, and the similarity in the power 

law behaviour of all the seven indices becomes very apparent. 

We further analyse the behaviour of the optimal investment horizon for the index 

(S&P CNX Nifty) as a function of the return level between 3% and 15%. Two distinct 
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scaling regimes can be observed in Chart 6, indicating a regime shift in investor trading 

patterns when returns crossover at 6% and at -8%. 

We now turn to the individual components of the S&P CNX Nifty. A frequency 

distribution of the maxima of first passage times (optimal investment horizons) of all the 

50 stocks is presented in Chart 7, and presented in Table 2. The maxima is distributed 

most frequently at seven days. This is an interesting finding, for two reasons. One is that 

seven trading days does not correspond to any trading patterns, pivoted on day of the 

week etc. Two, the most frequent maxima at seven days for the 50 constituent stocks and 

approximately 15 days for the index (S&P CNX Nifty) suggests a more complex 

dynamics between the index and its constituent stocks. From a statistical physics 

perspective, it would be interesting to examine the relative weights of liner and non-linear 

dependencies between the two systems, but such a study is outside the scope of this 

paper. 

Purely from an anecdotal viewpoint, we find no evidence of the optimal 

investment horizon for individual stocks related to the industry classifications. For 

instance, in the cement industry, ACC returns an OIH of 6 days whereas Ambuja 

Cements returns nine days. Within the banking industry, SBI (9), ICICI Bank (7), HDFC 

Bank (9) and Axis bank (5), and within the IT space, TCS (14), Infosys Technologies (7), 

Wipro (5) are similar examples. 

 
V. Conclusions  

The first passage times of the S&P CNX Nifty and the 50 constituent stocks were 

examined. At the return level of 5%, we find that the distribution of the first passage 
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times for the S&P CNX Nifty presents a distinct maxima at 15 trading days, which is the 

optimal investment horizon for the index. Six other major global stock indices were 

examined. This study finds that the optimal investment horizons for the 50 Nifty 

constituent stocks lie between four days and 15 days. This divergence suggests a complex 

dynamics between the constituent stocks and the index. We propose to examine the 

relative weights of the linear and non-linear dependencies between the index and its 

constituent stocks in later work. 

The existence of two distinct regimes in the scaling of the optimal investment 

horizon relative to the return level is interesting. The finding suggests a marked shift in 

investor trading behaviour at the crossover point, which was numerically found at 6% for 

positive returns and 8% for negative returns. We can offer no rigorous or even intuitive 

analysis of this finding, and is certainly a fit observation to research further. 

We are extending this analysis to examine the network of constituent stocks and 

the index, and particularly to investigate the components of the ‘optimality’ structure 

(work in progress). 
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Chart 1: Time series of S&P CNX Nifty; trading days on x axis 
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Chart 2: Decomposition levels of the S&P Nifty time series (Jan02, 1995- Apr 30, 2009), 

transformed with Daubchies 8 (D8) wavelet. 
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Chart 3: The underlying trend (red overlay) has been removed from the index (S&P CNX 

Nifty) time series using Daubchies 8 wavelet transform and reconstruction. The 
lower plate shows the de-trended series, which is just the fluctuation of the trend 
around the trend. This is not the same as a first difference. 
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Chart 4: The probability distribution ( )05.0τp  of the investment horizons of the S&P CNX 

Nifty for returns set at 5%. Squares (red, online) represent positive returns and 
triangles (blue, online) are for negative returns. Both distributions show a 
pronounced maximum and a non-zero probability for long horizons (more than 
100 days). 
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Chart 5a: The distribution of investment horizons for major stock exchanges. Note the log 

scale in the x axis (Table 1 for details). 
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Chart 5b: The distribution of horizons on a log-log axis, which clearly shows the power 

law behaviour. 
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Chart 6: Optimal investment horizon of the S&P CNX Nifty as a function of the return 

levels. Positive returns are shown as squares (red online) and negative returns as 
triangles (blue online). Two regimes can be observed for both positive and 
negative returns, with the crossover at 6% for positive returns, and 8% for 
negative returns. Note the logarithmic scale on both axes. 
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Chart 7: The frequency distribution of the optimal horizon for the 50 stocks constituting 

the S&P CNX Nifty for +5% returns. 
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Table 1: Distribution of optimal investment horizon of some major exchanges 
Return level=+5% 
Index OIH (days)
DJIA 39
FTSE-100 47
Hang Seng 18
Kospi 13
Nikkei-225 25
S&P CNX Nifty 15
Shanghai Composite 25  
 
Table 2: The optimal investment horizons of the constituent stocks 
 

Scrip name Scrip name
+5% -5% +5% -5%

1 ABB 7 8 26 TATASTEEL 7 5
2 ACC 6 6 27 UNITECH 6 4
3 REL INFRA 6 6 28 BPCL 6 7
4 CIPLA 7 7 29 BHEL 7 6
5 GRASIM 7 8 30 TATACOMM 6 6
6 AMBUJA CEM 9 7 31 WIPRO 5 6
7 HDFC 8 8 32 GAIL 7 6
8 HDFC BANK 9 8 33 ICICIBANK 7 5
9 HERO HONDA 7 6 34 AXISBANK 5 6

10 HINDALCO 7 9 35 NATIONALUM 7 5
11 HINDUNILVR 10 9 36 HCLTECH 5 6
12 INFOSYSTCH 7 6 37 BHARTIARTL 7 8
13 ITC 7 7 38 PNB 7 6
14 LT 6 7 39 MARUTI 8 7
15 M.M 7 8 40 STER 7 6
16 ONGC 7 8 41 TCS 14 9
17 RANBAXY 9 9 42 NTPC 15 10
18 RELCAPITAL 7 6 43 SUZLON 7 5
19 RELIANCE 8 7 44 RCOM 10 6
20 SAIL 5 5 45 RPL 9 8
21 SBIN 9 8 46 CAIRN 8 5
22 SIEMENS 7 6 47 IDEA 7 5
23 SUNPHARMA 7 8 48 DLF 5 4
24 TATAPOWER 8 7 49 POWERGRID 4 4
25 TATAMOTORS 7 6 50 RPOWER 4 4

OIH (days ) OIH (days )

 
 




