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Executive Summary

In a free capital mobile world with increased volatility, the need for an optimal hedge
ratio and its effectiveness is warranted to design better hedging strategy with future
contracts. The conventional wisdom suggest a naive strategy of 1:1 position; to
effectively hedge one unit of spot position is to hold one unit of future contract. This
strategy failed to deliver as the spot and future prices behave differently. Recent advances
in time series analysis comes in hand to resolve this problem with alternative model
specification and methods. This study analyses four competing models names, simple
ordinary least squares (OLS), vector autoregression model (VAR), vector error correction
model (VECM) and a class of multivariate generalized autoregressive conditional
heteroscedastic model (GARCH). With multivariate GARCH model we can estimate the
time varying hedge ratio whereas the other models give a single point estimate.

Two sets of data are used in this study. For developing the model, daily data on NSE
Stock Index Futures and S&P CNX Nifty Index for the time period from 4 September
2000 to 4™ August 2005 and for out of sample validation daily data from 5™ August 2005
to 19" September 2005 is considered. The effectiveness of the optimal hedge ratios
derived from these competing models are examined in two ways. First, the mean returns
of the hedged and the unhedged position and second, the average variance reduction
between the hedged and the unhedged position with the hedge ratios for 1, 5, 10 and 20
days horizon.

The results clearly vote for the time varying hedge ratio derived from the multivariate
GARCH model with higher mean return and higher average variance reduction across
hedged and unhedged position. Even though not outperforming the GARCH model, the
simple OLS based strategy performs well at shorter time horizons in terms of average
variance reduction. The potential use of this multivariate GARCH model cannot be
sublined because of its estimation complexities. This method bears some additional
benefits over the other simple techniques in terms of mean returns and variance
reduction. Sophisticated models are warranted to cut into the complexities of the
dynamics of a volatile world.
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1. Introduction

The effective use of futures contract in hedging decisions has become focus and center of
debate on finding out an optimal hedge ratio and hedging effectiveness in empirical
financial research. The recent advances in the time series econometrics has also helped to
rethink on the conventional methods adopted so far and revamped entire gamut of

empirical research to effectively determine the hedge ratio.

The conventional wisdom suggests about the optimal hedge ratio is to have 1:1 position;
to effectively hedge one unit of spot position is to hold one unit of future contract. This
strategy often called as naive-hedging strategy failed to deliver as the movement between
the spot and futures prices are not synchronized. This has brought a renewed interest at
the theoretical level by the works of Johnson (1960) and Stein (1961). They adopted a
portfolio approach to determine the optimal hedging strategy based on the expected-
utility maximization that boils down to minimum variance analysis as a special case.
Following this Ederington (1979) developed a measure of hedging effectiveness as a
percent reduction in the variance between the hedged and the unhedged returns. Until
then the optimal hedge ratio has been estimated from a simple regression between the
historical data on realized returns of spot and futures prices and the R-squared of that
regression has been considered as the measure of hedging effectiveness. Kroner and
Sultan (1993) criticized the hedge ratio obtained from the regression method, as it
becomes a biased one if there exists a cointegrating relationship between the spot and the

futures return. They proposed a vector error correction model to estimate the hedge ratio.



Two criticisms have been suggested against these empirical methods. First, the simple
regression hedge ratio has been derived from the unconditional second moments while
the actual minimum variance hedge ratio is based on the conditional second moments.
Second, a constant hedge ratio duly not considers the fact that the joint distribution of
spot and futures prices varies over time (Cecchetti et al, 1988). Recent advances in time
series econometric techniques have tried to address this problem. A multivariate GARCH
method developed by Bollerslev et al (1988) has used to estimate the time varying hedge
ratio by considering the conditional variance and covariance of the spot and futures
returns. Following this many empirical studies have compared the constant hedge ratio
with the time varying hedge ratio in perpetuating the return and the variance reduction

(Holmes, 1995, Park and Switzer, 1995, Chou et al, 1996, Yang and Allen, 2005)

This study focuses on estimating optimal hedge ratio for stock index futures in India and
comparing its hedging effectiveness. Daily data on NSE Stock Index Futures and S&P
CNX Nifty Index for the time period from 4™ September 2000 to 4™ August 2005 has
been considered for this study. Two important aspects contribute the significance of this
study. First, compared to other countries the futures market, particularly that of stock
index futures in India is fairly a new market in its earlier stage of development. Second,
as an emerging market India attracts more foreign investments that induces volatility in
the market. Effective hedging strategy would be highly imperative towards efficient risk
management in a more volatile environment. This paper organizes as follows: Section 2
gives a brief overview of the methodology used in estimating the hedge ratio. Section 3
provides the strategy for calculating hedging effectiveness. Section 4 presents a
description of the data used in this study. Section 5 discusses the empirical results and the

final section concludes with a summary.

2. Methodology for calculating Hedge Ratio

This study focuses on four different methods for estimating the hedge ratio and test its

effectiveness for both in-sample and out-sample data with 1, 5, 10 & 20 days horizon.



2.1 The Regression Method

A conventional method of finding an optimal hedge ratio is using simple ordinary least

square (OLS) estimation of the following linear regression model:
rst:a"'/g’”ﬁ"'gr (1)

where ry; and ry; are the spot and futures returns for period ¢.  provides an estimate of the

optimal hedge ratio.

2.2 The Bivariate VAR Method

A major disadvantage of the simple regression method described above is that there
exists a possibility for the residuals being autocorrelated. To overcome this the bivariate
vector autoregressive (VAR) model has be used. The optimal lag length for spot and
futures returns m, n are decided by iterating for each lag until the autocorrelation in the

residuals are fully eliminated from the system.

m n
rst = as + Zﬂsi rst—i +Z ysi rft—i +8st (2)
i=1 =1
m n
Pa =0 D Bl T2 T Y (3)
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After estimating the system of equation, the residual series are generated to calculate the
hedge ratio. Let var (e) = a,, var (g7) = or and cov (&g, &i) = 0y, then the minimum

variance hedge ratio is h* = gy / of

2.3 The Error Correction Method

If the level series of spot and future index are non-stationary and integrated of order one

then the following vector error correction model has been used estimate the hedge ratio.

m n

}/Tst = as + Zﬂsi rst—i +Z j/si rﬁ—i +ﬂ‘sZt—1 + gst (4)
i=1 =
m n
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where Z,.; = S.;— 0F.; is error correction term with (1-0) as cointegrating vector and 4, As
as adjustment parameters. Same procedure of generating the residual series and calculate
the variance, covariance of the series to estimate the minimum variance hedge ratio

depicted in the bivariate VAR model has been followed.

2.4 The Multivariate GARCH Method

As most of the financial time series data posses ARCH effects, the hedge ratio from the
VAR models has turned out to be extraneous. To take care of ARCH effects in the
residuals of error correction model, a VEC multivariate GARCH model of Bollerslev et
al (1988) has been deployed. The main advantage of this model is that it simultaneously
model the conditional variance and covariance of two interacted series. So we can able
retrieve the time varying hedge ratios based on the conditional variance and covariance of

the spot and the futures prices. A standard MGARCH (1,1) model is expressed as follows

2
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where Ay, hy are the conditional variance of the errors (gy, &7) from the mean equations.
In this paper the mean equation is the bivariate vector error correction model. As the
model has 21 parameters to be estimated, Engle and Wooldridge (1988) proposed a
restricted version of the above model with @ and g matrix have only diagonal elements.

This Diagonal Vec (DVEC) model is expressed as

_ 2
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The time varying hedge ratio has been calculated as the ratio between covariance of spot
and futures price with variance of futures price. So hsﬁ / h s will be the time varying

hedge ratio.



3. Estimating Hedging Effectiveness

The performance of the hedging strategies developed in the previous section has been
examined by finding the hedging effectiveness of each strategy. To compare, the un-
hedged portfolio is constructed as the composition of shares with same proportion held in
the spot price index. The hedged portfolio is constructed with the combination of both
the spot and the futures contract held. The hedge ratios estimated from each strategy
determines the number of futures contract. The hedging effectiveness is calculated by the
variance reduction in the hedged portfolio compared to that of un-hedged portfolio. The
return of un-hedged and hedged portfolios are simply expressed as follows:
R =S, -5, (10)

unhedged t+1

Rhedged :(SH—I _St)_h*(F;+1 _E) (11)
where Ruihedged ad Rjeqgeq are return on un-hedged and hedged portfolio. S; and F; are

logged spot and futures prices at time ¢ with A* is optimal hedge ratio. Similarly the

variance of the un-hedged and hedged portfolio is expressed as
Var, = o’ (12)
Var, =o' +h*26; —2h*0'3f (13)
where Vary and Vary are variance of un-hedged and hedged portfolios with a;, oy and oy
are standard deviations of spot and futures price and covariance between them
respectively. Ederington (1979) proposed a measure of hedging effectiveness as the
percentage reduction in variance of the hedged and the un-hedged portfolios. The

Var,, —Var,

hedging effectiveness is calculated as . This measure is calculated for both in-

Var,

sample and out-sample data with 1, 5, 10 & 20 days horizon for evaluation.

4. Data

This study uses Daily data on NSE Stock Index Futures and S&P CNX Nifty Index for
the time period from 4™ September 2000 to 4™ August 2005. The data are collected from

the NSE website (www.nseindia.com). Figure 1 graphs the data on spot index and the

future index.


http://www.nseindia.com/

Figure 1: Data on Spot Index and Future Index
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Let S be the log of S&P CNX Nifty Index and F is the log of NSE Stock Index Futures.
The standard unit root test establishes that the series S and F' are non-stationary at levels
and the return series (7, and ry) are stationary. Table 1 provides the unit root test results.

Table 1: Unit Root Test

ADF ADF

Variable o Variable o
Statistics Statistics
S 0.290 rs -26.57**
F 0.246 ry -26.47%*

** denote significance at 1% level.

The cointegration test is conducted using the Johansen’s (1991) maximum likelihood
method. We have used four lags in short-run specification of the model as suggested by
Akaike information, Schwartz, Hannen-Quin criteria and likelihood ratio test. The results
of cointegration tests are presented in Table 2. The trace and max-eigen value statistics
suggest existence of one cointegrating vector at 1 % level of significance. The
cointegrating vector normalized with respect to S show that the long run cointegrating

coefficients with respect to F is statistically significant.



Table 2: Cointegration Analysis

) ) 95 % Critical 95 % Ceritical
Hypothesis  Eigenvalue A track A max
Value Value
r=0 0.0475 60.96 12.53 60.21°" 11.44
r<l 0.0006 0.75 3.84 0.75 3.84

r s valid cointegration vectors. ** denote significance at 1% level.

The corresponding unrestricted cointegrating vector normalized on S is given as

S F
1 -1.000185
(0.00008)

Standard errors are in the parentheses.

5. Empirical Results

In this section, we calculate the optimal hedge ratio from four different models described

in section 2 and compare the measures of hedging effectiveness of these hedging models.

5.1. Estimates of Optimal Hedge Ratio

First, the optimal hedge ratio is calculated from a simple OLS regression (1). Table 3
reports the results from the regression model. The optimal hedge ratio is 0.928642.
Table 3: OLS Regression Model

Coefficient
0.00003
a
(0.000104)
B 0.928642%**
(0.0070)
R2
0.933977

Standard errors are in the parentheses.
** denote significance at 1% level.



To calculate the optimal hedge ratio from a Bivariate VAR model, we estimated the

equations (2) and (3) with four lags and the results are presented in Table 4.

Table 4: Estimates of Bivariate VAR Model

Equation (2) Coefficient Equation (3) Coefficient
o 0.0003 o 0.0003
‘ (0.0003) (0.0004)
0.3849%* 0.6840%*
o (0.117) Pr (0.121)

‘ 0.0380 0.2779*
& (0.121) Pr (0.126)

‘ 0.0044 0.1045
& (0.120) P (0.125)

‘ 0.1540 0.2359*
Pt (0.114) P (0.119)
o 20.2437% " 20.5765%*

(0.112) (0.116)
20.1731 20.3885%*
ysz 0.117) e (0.122)
0.0524 20,0267
yS3 (0.116) s (0.121)
20.0614 20.1367
7 (0.110) " (0.115)

2 2

R 0.04737 R 0.04922

In the parentheses are standard errors. * (**) denote significance at 5 % and 1% level

respectively.
The optimal hedge ratio is derived as 4* = g,/ 6. Where oy 1s covariance (& &) and oy is
variance (g7 ) with & and ¢ are the residuals from the equations (2) and (3). Table 5

presents the estimates of optimal hedge ratio from the Bivariate VAR Model.

Table 5: Optimal Hedge Ratio from the Bivariate VAR Model

Values
Covariance (&, &r) 0.000195
Variance (gr) 0.000209
h* 0.932921




To calculate the optimal hedge ratio from a Vector Error Correction (VEC) model, we
estimated the equations (4) and (5) with four lags and the results are presented in Table 6.
From the results we see that the speed of adjustment parameter A,1s significant only in the
futures equation with a positive value, which signifies that the future index is converging

to movements in spot index and not the vice versa.

Table 6: Estimates of Vector Error Correction Model

Equation (4) Coefficient Equation (5) Coefficient
o 0.0003 o 0.0003
(0.0003) (0.0004)
0.2898* 0.4780%*
Pt (0.130) P (0.135)
20.0408 0.1070
P (0.130) br (0.135)
20.0555 20.0253
& (0.1258) br (0.130)
0.1100 0.1408
Pt (0.117) P (0.121)
o 20.1508 o 20.3750%
(0.126) (0.130)
v 20.0974 20.2244%
y” (0.122) e (0.135)
v 0.1098 0.0976
™ (0.125) s (0.126)
o 20.0195 » 20.0459
(0.113) (0.117)
2 0.1352 3 0.2931%*
(0.082) (0.085)
2 2
R 0.04943 R 0.05817

In the parentheses are standard errors. * (**) denote significance at 5 % and 1% level
respectively.

The optimal hedge ratio is derived as 2* = o,/ 0. Where oy 1s covariance (& &) and oy is
variance (g ) with ¢ and ¢ are the residuals from the equations (4) and (5). Table 7

presents the estimates of optimal hedge ratio from the VEC Model.
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Table 7: Optimal Hedge Ratio from the VEC Model

Values
Covariance (&, &r) 0.000194
Variance (gr) 0.000207
h* 0.937400

To examine the efficiency of both the Bivariate VAR model and the VEC Model, the
features of the residuals are examined. Figure 2 plots the residuals from equation (2) and
(3) and Figure 3 plots the residuals from equation (4) and (5). It clearly shows the
presence of ARCH effects. This is also confirmed by the analysis proposed by McLeod
and Li (1983), which examine the sample autocorrelation functions of the mean equation.
In that the squared residuals from the estimated mean equation is checked for a
significant Q-statistic at a given lag. The results, which show a high significance for the
Q-statistic for each given lag, are reported in Table 8 for Bivariate VAR model and Table
9 for VEC model.

Figure 2: Residual series from Spot and Future equation in Bivariate VAR model.
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Figure 3: Residual series from Spot and Future equation in VEC model.
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Table 8: Squared residuals from the BivariateVAR Model
Equation (2)

Autocorrelation

Partial Correlation

AL PAC

C-Stat

Proh

000~ 0 M o LR —

10
"
12
13
14
14
16
17
13
19
20

0.5621 0521
0.156 -0.159
0.051 0.056
0107 0103
0.100 -0.015
0.051 -0.002
0.039 0.034
0.071 0.046
0114 0.082
0.064 -0.043
0.010 -0.00&
0.021 0.035
0025 0.016
0.0 0.040
0.025 -0.046
-0.004 0.003
0.001 -0.001
0.00¢ -0.019
0.031 0.046
0.0z0 -0.omy

336.53
366,76
370.00
Jo4.12
396.50
399,65
401.55
407 .55
423,958
429 02
42913
429 BY
433.43
441.07
441,86
441,88
441,88
441,94
44317
443 b6

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Equation (3)

Autocaorrelation

FPartial Correlation

AL PAC

C-Stat

Fraob

D I Y I T Y =S T I A

0426 0426
0.092 -0.109
0.040 0.054
o111 001
0.0a3 -0.010
0.032% 0.009
0.018 0.003
0.0s1 0.054
0151 012
0.045 -0.021
0012 0.039
0.015 -0.003
0.051 0.020
0.069 0.045
0.015 -0.045
0.004 0023
0.002 -0.021
-0.002 -0.032
0.025 0.051
0.004 -0.044

22458
235.08
23707
2523
260,78
26263
263.04
267 67
29614
295.580
29597
29925
302.47
305.47
305.74
30877
305.78
305.78
J09.57
309.55

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

p



Table 9: Squared residuals from the VEC Model
Equation (4)

Autocaorrelation

Fartial Correlation

AL

PAC  (-Stat

Frob

oo =l k=

-0.006
-0.007

0.515 0414
0.145 -0.163
0.047 0.082
0105 0.104
0.053 -0.021
0.04% 0.003
0.038 0.023
0.052 0.045
0116 0.071
0.066 -0.045
0.005 -0.009
0.018 0.033
0.0s7 0.022
0.077 0.033
0.022 -0.044
0.005
-0.004
0.005 -0.014
0.036 0.050
0.025 -0.016

327 .84
3377
3ok .47
0.6
380.594
Jg3.84
355.65
391.60
40524
413.70
413,78
41417
415.18
425 56
426,18
426222
426222
42650
427 .50
425 .6k

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Equation (5)

Autocarrelation

Partial Correlation

A PAC

C-5tat

Praob

[ T e I O Y-S A T N

0.401
0.073
0.030
0.104
0.070
0.054
0.015

0.401
0104
0.047
0.095
0.016
0.my
0.000
0.054 0.048
0153 0.132
0.051 -0.031
0.005 0.028
0.0058 -0.002
0.053 0.027
0.065 0.036
0.013 -0.038
0.002 0019
0.0o01 -0.019
0.000 -0.030
0.032 0.082
0.010 -0.035

198.81
205.40
206.50
22002
22605
22750
22780
23157
260.65
26392
26401
26410
267 Bh
27288
20307
27308
27308
27308
27457
27450

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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The residual plots and Q-Statistic from the squared residual series denotes the presence of
ARCH effects. This implies that the assumption of constant variance over time and the
estimation of constant hedge ratios may be inappropriate. The estimation of time-varying
variances and covariances and as a consequence time-varying hedge ratios based on a
GARCH model are therefore expected to give better results. We estimated the Diagonal
VEC multivariate GARCH model of Engle and Wooldridge (1988). The estimated results
of the DVEC model specified in equations (7)-(9) are presented in Table 10.

Table 10: Estimates of the DVEC-GARCH Model

Coefficient

c 0.0000156%*
5 (0.0000017)
c. 0.0000146%*
o (0.0000015)
c 0.0000148%*
7 (0.0000015)
0.7746040%*

a1l (0.0156636)
0.7883055%*

022 (0.0146405)
0.7917804**

o33 (0.0139856)
0.1293227%*

P (0.0126181)
0.1183799%**

Pz (0.0115152)
0.1182199%*

Pss (0.0106835)

In the parentheses are standard errors.

** denote significance at 1% level.

Figure 4 depicts the time varying hedge ratio derived from the DVEC GARCH model.

The average value of the time varying hedge ratio series is 0.95885.
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Figure 4: Estimates of Time Varying Hedge Ratio from DVEC GARCH Model
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The optimal hedge ratio estimated from four different models are listed in Table 11.

Table 11: Estimates of Optimal Hedge Ratio

Method h*
OLS 0.92864
BVAR 0.93292
VECM 0.93740
DVEC-GARCH 005585

5.2. Estimates of Hedging Effectiveness

Daily data on NSE Stock Index Futures and S&P CNX Nifty Index for the time period
from 4™ September 2000 to 4™ August 2005 has been used for constructing the optimal
hedge ratio and test its effectiveness with 1, 5, 10 & 20 day horizon. For out of sample

validation, data from 5™ August 2005 to 19™ September 2005 has been used.

Traditionally the hedging effectiveness is equal to R-squared of the OLS regression. But

to compare across competing strategies, we consider a standard method explained in
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section 3 to test the hedging effectiveness for the optimal hedge ratios derived from all

the models. A hedging strategy is effective only if the mean return from the strategy is

higher than the competing strategies and it reduced a significant portion of the variance

with respect to its unhedged strategy. The mean returns and average variance reduction

has been calculated for non overlapping 1, 5, 10 & 20 day horizon for both within sample

and out of sample validations. Table 12 gives within sample mean returns and Table 13

gives the average variance reduction for different hedging ratios.

Table 12: Mean Return for within sample

Method h* 1-Day 5-Day 10-Day 20-Day
OLS
0.92864 0.041% | 0.040% 0.037% | 0.031%
BVAR 0.93292 0.041% | 0.040% 0.037% | 0.032%
VECM 0.93740 0.042% | 0.041% 0.038% | 0.032%
DVEC-GARCH | ) 55645 0.043% | 0.041% 0.038% | 0.033%
DVEC-GARCH | Time
Varying 0.044% |  0.042% 0.038% | 0.034%

The table clearly establishes the fact that the time varying hedge ratio from the DVEC-

GARCH specification has given a higher mean returns compared to any other derived

optimal hedge ratios.

Table 13: Average Variance Reduction for within sample

Method h* 1-Day 5-Day 10-Day 20-Day

OLS

0.92864 03.36% |  83.67% 89.69% 91.41%
BVAR 0.93292 93.36% | $3.60% 89.68% 91.41%
VECM 0.93740 93.35% |  83.52% 89.66% 91.41%
DVEC-GARCH | 95445 93.26% | 83.07% 89.52% 91.36%
DVEC-GARCH | Time

Varying 92.96% | 83.24% 89.71% 01.44%

The variance reduction depicts a slightly different picture, for smaller time horizons the

optimal hedge ratio derived from OLS is performing better than the other competing

16




strategies whereas for longer time horizons it is DVEC-GARCH time varying hedge ratio
performs better. But the out of sample mean returns and average variance reduction vote
for time varying hedge ratio from the DVEC-GARCH specification. Table 14 and Table

15 present the results.

Table 14: Mean Return for out of sample

Method h* 1-Day 5-Day 10-Day 20-Day
OLS
0.92864 0.029% 0.024% 0.024% 0.024%
BVAR 0.93292 0.028% 0.020% 0.020% 0.020%
VECM 0.93740 0.027% | 0.015% 0.015% |  0.015%
DVEC-GARCH 0.95885 0.025% -0.008% -0.008% -0.008%
DVEC-GARCH Time
Varying 0.037% 0.026% 0.025% 0.025%
Table 15: Average Variance Reduction for out of sample
Method h* 1-Day 5-Day 10-Day 20-Day
OLS
0.92864 91.92% 93.20% 93.27% 93.16%
BVAR 0.93292 91.84% |  93.11% 93.19% 93.07%
VECM 0.93740 91.75% 93.00% 93.09% 92.97%
DVEC-GARCH 0.95885 91.25% 92.43% 92.56% 92.44%,
DVEC-GARCH Time
Varying 92.36% |  93.35% 93.37% 93.18%
6. Conclusion

The conventional naive strategy of 1:1 position for hedging has faced several criticisms
as the spot and future prices behave differently. In a free capital mobile world with an
increased volatility the need for an effective hedging strategy is highly imperative for the
fund managers to optimize. This paper tries to give an overview of the competing models
in calculating optimal hedge ratio. The effectiveness of these strategies is compared with
mean returns and average variance reduction with respect to the unhedged position.

Daily data on NSE Stock Index Futures and S&P CNX Nifty Index for the time period
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from 4™ September 2000 to 4™ August 2005 has been considered for developing the
optimal hedge ratio and the data from 5™ August 2005 to 19™ September 2005 has been
considered for out of sample validation. The results clearly establishes that the time
varying hedge ratio derived from DVEC-GARCH model gives a higher mean returns
compared to other counterparts. On the average variance reduction front the DVEC-
GARCH model gives better performance only in the long time horizons compared to the
simple OLS method that scores well in the short time horizons. The DVEC-GARCH
model imparts a slight edge over the OLS in the out of sample validation. This DVEC-
GARCH model cannot be ignored for its modeling complexities as it provides an
improved outcome in terms of effective hedging against simple naive and other
strategies. However, from a cost of computation point of view, given the complexities
involved in estimating the DVEC-GARCH model, one can equally consider the simple

OLS strategy that performs well at the shorter time horizons.
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