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Executive Summary 

 
In a free capital mobile world with increased volatility, the need for an optimal hedge 
ratio and its effectiveness is warranted to design better hedging strategy with future 
contracts. The conventional wisdom suggest a naïve strategy of 1:1 position; to 
effectively hedge one unit of spot position is to hold one unit of future contract. This 
strategy failed to deliver as the spot and future prices behave differently. Recent advances 
in time series analysis comes in hand to resolve this problem with alternative model 
specification and methods. This study analyses four competing models names, simple 
ordinary least squares (OLS), vector autoregression model (VAR), vector error correction 
model (VECM) and a class of multivariate generalized autoregressive conditional 
heteroscedastic model (GARCH). With multivariate GARCH model we can estimate the 
time varying hedge ratio whereas the other models give a single point estimate.  
 
Two sets of data are used in this study. For developing the model, daily data on NSE 
Stock Index Futures and S&P CNX Nifty Index for the time period from 4th September 
2000 to 4th August 2005 and for out of sample validation daily data from 5th August 2005 
to 19th September 2005 is considered. The effectiveness of the optimal hedge ratios 
derived from these competing models are examined in two ways. First, the mean returns 
of the hedged and the unhedged position and second, the average variance reduction 
between the hedged and the unhedged position with the hedge ratios for 1, 5, 10 and 20 
days horizon.  
 
The results clearly vote for the time varying hedge ratio derived from the multivariate 
GARCH model with higher mean return and higher average variance reduction across 
hedged and unhedged position. Even though not outperforming the GARCH model, the 
simple OLS based strategy performs well at shorter time horizons in terms of average 
variance reduction. The potential use of this multivariate GARCH model cannot be 
sublined because of its estimation complexities. This method bears some additional 
benefits over the other simple techniques in terms of mean returns and variance 
reduction. Sophisticated models are warranted to cut into the complexities of the 
dynamics of a volatile world. 
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1. Introduction 

 

The effective use of futures contract in hedging decisions has become focus and center of 

debate on finding out an optimal hedge ratio and hedging effectiveness in empirical 

financial research. The recent advances in the time series econometrics has also helped to 

rethink on the conventional methods adopted so far and revamped entire gamut of 

empirical research to effectively determine the hedge ratio.  

 

The conventional wisdom suggests about the optimal hedge ratio is to have 1:1 position; 

to effectively hedge one unit of spot position is to hold one unit of future contract. This 

strategy often called as naïve-hedging strategy failed to deliver as the movement between 

the spot and futures prices are not synchronized. This has brought a renewed interest at 

the theoretical level by the works of Johnson (1960) and Stein (1961). They adopted a 

portfolio approach to determine the optimal hedging strategy based on the expected-

utility maximization that boils down to minimum variance analysis as a special case. 

Following this Ederington (1979) developed a measure of hedging effectiveness as a 

percent reduction in the variance between the hedged and the unhedged returns. Until 

then the optimal hedge ratio has been estimated from a simple regression between the 

historical data on realized returns of spot and futures prices and the R-squared of that 

regression has been considered as the measure of hedging effectiveness. Kroner and 

Sultan (1993) criticized the hedge ratio obtained from the regression method, as it 

becomes a biased one if there exists a cointegrating relationship between the spot and the 

futures return. They proposed a vector error correction model to estimate the hedge ratio.   
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Two criticisms have been suggested against these empirical methods. First, the simple 

regression hedge ratio has been derived from the unconditional second moments while 

the actual minimum variance hedge ratio is based on the conditional second moments. 

Second, a constant hedge ratio duly not considers the fact that the joint distribution of 

spot and futures prices varies over time (Cecchetti et al, 1988). Recent advances in time 

series econometric techniques have tried to address this problem. A multivariate GARCH 

method developed by Bollerslev et al (1988) has used to estimate the time varying hedge 

ratio by considering the conditional variance and covariance of the spot and futures 

returns. Following this many empirical studies have compared the constant hedge ratio 

with the time varying hedge ratio in perpetuating the return and the variance reduction 

(Holmes, 1995, Park and Switzer, 1995, Chou et al, 1996, Yang and Allen, 2005) 

 

This study focuses on estimating optimal hedge ratio for stock index futures in India and 

comparing its hedging effectiveness. Daily data on NSE Stock Index Futures and S&P 

CNX Nifty Index for the time period from 4th September 2000 to 4th August 2005 has 

been considered for this study. Two important aspects contribute the significance of this 

study. First, compared to other countries the futures market, particularly that of stock 

index futures in India is fairly a new market in its earlier stage of development. Second, 

as an emerging market India attracts more foreign investments that induces volatility in 

the market. Effective hedging strategy would be highly imperative towards efficient risk 

management in a more volatile environment. This paper organizes as follows: Section 2 

gives a brief overview of the methodology used in estimating the hedge ratio. Section 3 

provides the strategy for calculating hedging effectiveness. Section 4 presents a 

description of the data used in this study. Section 5 discusses the empirical results and the 

final section concludes with a summary. 

 

2. Methodology for calculating Hedge Ratio 

 

This study focuses on four different methods for estimating the hedge ratio and test its 

effectiveness for both in-sample and out-sample data with 1, 5, 10 & 20 days horizon.  
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2.1 The Regression Method 
 

A conventional method of finding an optimal hedge ratio is using simple ordinary least 

square (OLS) estimation of the following linear regression model: 

tftst rr εβα ++=          (1) 

where rst and rft are the spot and futures returns for period t. β provides an estimate of the 

optimal hedge ratio.  

 

2.2 The Bivariate VAR Method 
 

A major disadvantage of the simple regression method described above is that there 

exists a possibility for the residuals being autocorrelated. To overcome this the bivariate 

vector autoregressive (VAR) model has be used. The optimal lag length for spot and 

futures returns m, n are decided by iterating for each lag until the autocorrelation in the 

residuals are fully eliminated from the system.  
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After estimating the system of equation, the residual series are generated to calculate the 

hedge ratio. Let var (εst) = σs, var (εft) = σf and cov (εst, εft) = σsf, then the minimum 

variance hedge ratio is h* = σsf / σf

 
2.3 The Error Correction Method 
 

If the level series of spot and future index are non-stationary and integrated of order one 

then the following vector error correction model has been used estimate the hedge ratio. 
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where Zt-1 = St-1 – δFt-1 is error correction term with (1-δ) as cointegrating vector and λs, λf 

as adjustment parameters. Same procedure of generating the residual series and calculate 

the variance, covariance of the series to estimate the minimum variance hedge ratio 

depicted in the bivariate VAR model has been followed. 

 

2.4 The Multivariate GARCH Method 

 

As most of the financial time series data posses ARCH effects, the hedge ratio from the 

VAR models has turned out to be extraneous. To take care of ARCH effects in the 

residuals of error correction model, a VEC multivariate GARCH model of Bollerslev et 

al (1988) has been deployed. The main advantage of this model is that it simultaneously 

model the conditional variance and covariance of two interacted series. So we can able 

retrieve the time varying hedge ratios based on the conditional variance and covariance of 

the spot and the futures prices. A standard MGARCH (1,1) model is expressed as follows 
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where hss, hff are the conditional variance of the errors (εst , εft) from the mean equations. 

In this paper the mean equation is the bivariate vector error correction model. As the 

model has 21 parameters to be estimated, Engle and Wooldridge (1988) proposed a 

restricted version of the above model with α and β matrix have only diagonal elements. 

This Diagonal Vec (DVEC) model is expressed as 

111
2

111 −− ++= sststsssst hch βεα        (7) 

1221122 −−− ++= sftftstsfsft hch βεεα       (8) 

133
2

133 −− ++= fftftfffft hch βεα        (9) 

 

The time varying hedge ratio has been calculated as the ratio between covariance of spot 

and futures price with variance of futures price. So fftsft hh will be the time varying 

hedge ratio. 

 5



3. Estimating Hedging Effectiveness 

 
The performance of the hedging strategies developed in the previous section has been 

examined by finding the hedging effectiveness of each strategy. To compare, the un-

hedged portfolio is constructed as the composition of shares with same proportion held in 

the spot price index.  The hedged portfolio is constructed with the combination of both 

the spot and the futures contract held. The hedge ratios estimated from each strategy 

determines the number of futures contract. The hedging effectiveness is calculated by the 

variance reduction in the hedged portfolio compared to that of un-hedged portfolio. The 

return of un-hedged and hedged portfolios are simply expressed as follows: 

ttunhedged SSR −= +1          (10) 

)()( 1
*

1 tttthedged FFhSSR −−−= ++        (11) 

where Runhedged and Rhedged are return on un-hedged and hedged portfolio. St and Ft are 

logged spot and futures prices at time t with h* is optimal hedge ratio. Similarly the 

variance of the un-hedged and hedged portfolio is expressed as  
2
sUVar σ=           (12) 

sffsH hhVar σσσ *22*2 2−+=        (13) 

where VarU and VarH are variance of un-hedged and hedged portfolios with σs, σf and σsf 

are standard deviations of spot and futures price and covariance between them 

respectively. Ederington (1979) proposed a measure of hedging effectiveness as the 

percentage reduction in variance of the hedged and the un-hedged portfolios. The 

hedging effectiveness is calculated as 
U

HU

Var
VarVar − . This measure is calculated for both in-

sample and out-sample data with 1, 5, 10 & 20 days horizon for evaluation. 

 

4. Data  
 
This study uses Daily data on NSE Stock Index Futures and S&P CNX Nifty Index for 

the time period from 4th September 2000 to 4th August 2005. The data are collected from 

the NSE website (www.nseindia.com). Figure 1 graphs the data on spot index and the 

future index. 
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Figure 1: Data on Spot Index and Future Index 
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Let S be the log of S&P CNX Nifty Index and F is the log of NSE Stock Index Futures. 

The standard unit root test establishes that the series S and F are non-stationary at levels 

and the return series (rs and rf) are stationary. Table 1 provides the unit root test results. 

Table 1: Unit Root Test 

Variable 
ADF 

Statistics 
Variable

ADF 

Statistics

S 0.290 rs -26.57**

F 0.246 rf -26.47**

** denote significance at 1% level. 
 

The cointegration test is conducted using the Johansen’s (1991) maximum likelihood 

method. We have used four lags in short-run specification of the model as suggested by 

Akaike information, Schwartz, Hannen-Quin criteria and likelihood ratio test. The results 

of cointegration tests are presented in Table 2. The trace and max-eigen value statistics 

suggest existence of one cointegrating vector at 1 % level of significance. The 

cointegrating vector normalized with respect to S show that the long run cointegrating 

coefficients with respect to F is statistically significant.  
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Table 2: Cointegration Analysis  

Hypothesis Eigenvalue λ TRACE
95 % Critical 

Value 
λ MAX

95 % Critical 

Value 

r = 0 0.0475 60.96** 12.53 60.21** 11.44 

r ≤ 1 0.0006 0.75 3.84 0.75 3.84 

r is valid cointegration vectors. ** denote significance at 1% level. 
 

The corresponding unrestricted cointegrating vector normalized on S is given as  

S F 

1 
-1.000185 

(0.00008) 

Standard errors are in the parentheses.  

 

5. Empirical Results  

 

In this section, we calculate the optimal hedge ratio from four different models described 

in section 2 and compare the measures of hedging effectiveness of these hedging models.  

 

5.1. Estimates of Optimal Hedge Ratio 

 

First, the optimal hedge ratio is calculated from a simple OLS regression (1). Table 3 

reports the results from the regression model. The optimal hedge ratio is 0.928642. 

Table 3: OLS Regression Model 

 Coefficient 

α 
0.00003 

(0.000104) 

β 0.928642** 
(0.0070) 

R2
0.933977 

                Standard errors are in the parentheses.  
                                      ** denote significance at 1% level. 
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To calculate the optimal hedge ratio from a Bivariate VAR model, we estimated the 

equations (2) and (3) with four lags and the results are presented in Table 4. 

 

Table 4: Estimates of Bivariate VAR Model 

Equation (2) Coefficient Equation (3) Coefficient

αs 0.0003 
(0.0003) 

αf 0.0003 
(0.0004) 

βs1 0.3849** 
(0.117) 

βf1 0.6840** 
(0.121) 

βs2 0.0380 
(0.121) 

βf2 0.2779* 
(0.126) 

βs3 0.0044 
(0.120) 

βf3 0.1045 
(0.125) 

βs4 0.1540 
(0.114) 

βf4 0.2359* 
(0.119) 

γs1 -0.2437* 
(0.112) 

γf1 -0.5765** 
(0.116) 

γs2 -0.1731 
(0.117) 

γf2 -0.3885** 
(0.122) 

γs3 0.0524 
(0.116) 

γf3 -0.0267 
(0.121) 

γs4 -0.0614 
(0.110) 

γf4 -0.1367 
(0.115) 

R2
0.04737 R2

0.04922 
In the parentheses are standard errors. * (**) denote significance at 5 % and 1% level 

respectively. 

 

The optimal hedge ratio is derived as h* = σsf / σf. Where σsf is covariance (εs εf ) and σf is 

variance (εf ) with εs and εf are the residuals from the equations (2) and (3). Table 5 

presents the estimates of optimal hedge ratio from the Bivariate VAR Model. 

 

Table 5: Optimal Hedge Ratio from the Bivariate VAR Model 

 Values 

Covariance (εs εf ) 0.000195 

Variance (εf ) 0.000209 

h* 0.932921 
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To calculate the optimal hedge ratio from a Vector Error Correction (VEC) model, we 

estimated the equations (4) and (5) with four lags and the results are presented in Table 6. 

From the results we see that the speed of adjustment parameter λf is significant only in the 

futures equation with a positive value, which signifies that the future index is converging 

to movements in spot index and not the vice versa. 

 

Table 6: Estimates of Vector Error Correction Model 

Equation (4) Coefficient Equation (5) Coefficient 

αs 0.0003 
(0.0003) 

αf 0.0003 
(0.0004) 

βs1 0.2898* 
(0.130) 

βf1 0.4780** 
(0.135) 

βs2 -0.0408 
(0.130) 

βf2 0.1070 
(0.135) 

βs3 -0.0555 
(0.1258) 

βf3 -0.0253 
(0.130) 

βs4 0.1100 
(0.117) 

βf4 0.1408 
(0.121) 

γs1 -0.1508 
(0.126) 

γf1 -0.3750** 
(0.130) 

γs2 -0.0974 
(0.122) 

γf2 -0.2244* 
(0.135) 

γs3 0.1098 
(0.125) 

γf3 0.0976 
(0.126) 

γs4 -0.0195 
(0.113) 

γf4 -0.0459 
(0.117) 

λs 0.1352 
(0.082) 

λf 0.2931** 
(0.085) 

R2
0.04943 R2

0.05817 
In the parentheses are standard errors. * (**) denote significance at 5 % and 1% level 
respectively.  
 

The optimal hedge ratio is derived as h* = σsf / σf. Where σsf is covariance (εs εf ) and σf is 

variance (εf ) with εs and εf are the residuals from the equations (4) and (5). Table 7 

presents the estimates of optimal hedge ratio from the VEC Model. 
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Table 7: Optimal Hedge Ratio from the VEC Model 

 Values 

Covariance (εs εf ) 0.000194 

Variance (εf ) 0.000207 

h* 0.937400 

 

To examine the efficiency of both the Bivariate VAR model and the VEC Model, the 

features of the residuals are examined. Figure 2 plots the residuals from equation (2) and 

(3) and Figure 3 plots the residuals from equation (4) and (5). It clearly shows the 

presence of ARCH effects. This is also confirmed by the analysis proposed by McLeod 

and Li (1983), which examine the sample autocorrelation functions of the mean equation. 

In that the squared residuals from the estimated mean equation is checked for a 

significant Q-statistic at a given lag. The results, which show a high significance for the 

Q-statistic for each given lag, are reported in Table 8 for Bivariate VAR model and Table 

9 for VEC model.  

 

Figure 2: Residual series from Spot and Future equation in Bivariate VAR model. 
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Table 8: Squared residuals from the BivariateVAR Model 

Equation (2) 

 

Equation (3) 

 

12 



Table 9: Squared residuals from the VEC Model 

Equation (4) 

 

Equation (5) 
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The residual plots and Q-Statistic from the squared residual series denotes the presence of 

ARCH effects. This implies that the assu stant variance over time and the 

stimation of constant hedge ratios may be inappropriate. The estimation of time-varying 

mption of con

e

variances and covariances and as a consequence time-varying hedge ratios based on a 

GARCH model are therefore expected to give better results. We estimated the Diagonal 

VEC multivariate GARCH model of Engle and Wooldridge (1988). The estimated results 

of the DVEC model specified in equations (7)-(9) are presented in Table 10. 

 

Table 10: Estimates of the DVEC-GARCH Model 

 Coefficient 

Css
0.0000156** 
(0.0000017) 

C f
0.0000146** 

s (0.0000015) 

Cff
0.0000148** 
(0.0000015) 

α11
0.7746040** 
(0.0156636) 

α22
0.7883055** 
(0.0146405) 

α33
0.7917804** 
(0.0139856) 

β11
0.1293227** 
(0.0126181) 

β22
0.1183799** 
(0.0115152) 

β33
0.1182199** 
(0.0106835) 

In the pa theses are stand

** denote significance at 1
 

Figure 4 depicts the t he DVEC GARCH model. 

The average value of t 0.95885.  
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Figure 4: Estimates of Time Varying Hedge Ratio from DVEC GARCH Model 
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The optimal hedge ratio estimated from four different models are listed in Table 11.  

Table 11: Estimates of Optimal Hedge Ratio 

OLS  0.92864 
BVAR 0.93292 
VECM 0.93740 
DVEC-GARCH 0.95885 

 

 
5.2. Estimates of Hedging Effectiveness 

aily data on NSE Stock Index Futures and S&P CNX Nifty Index for the time period 

005 has been used for constructing the optimal 

edge ratio and test its effectiveness with 1, 5, 10 & 20 day horizon. For out of sample 

xplained in 

 

D

from 4th September 2000 to 4th August 2

h

validation, data from 5th August 2005 to 19th September 2005 has been used.  

 

Traditionally the hedging effectiveness is equal to R-squared of the OLS regression. But 

to compare across competing strategies, we consider a standard method e
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section 3 to test the hedging effectiveness for the optimal hedge ratios derived from all 

10-Day 20-Day 

the models. A hedging strategy is effective only if the mean return from the strategy is 

higher than the competing strategies and it reduced a significant portion of the variance 

with respect to its unhedged strategy. The mean returns and average variance reduction 

has been calculated for non overlapping 1, 5, 10 & 20 day horizon for both within sample 

and out of sample validations. Table 12 gives within sample mean returns and Table 13 

gives the average variance reduction for different hedging ratios.  

 

Table 12: Mean Return for within sample 

Method h* 1-Day 5-Day 

OLS  0.92864 0.041% 0.040% 0.037% 0.031%
BVAR 0.9 0.037% 0.032%3292 0.041% 0.040%
VEC 0.93740 0.042%M 0.041% 0.038% 0.032%
DVEC-GARCH 0.95885 0.043% 0.041% 0.038% 0.033%
DVEC-GARCH 

0.044% 0.042% 0.038%
Time 

Varying  0.034%
 

The table clearly establishes the fact that the time va dge ra he

G tio en a high  retu ared to any other derived 

optimal hedge ratios.  

h* 1-Day 5-Day 10-Day 20-Day 

rying he tio from t  DVEC-

ARCH specifica n has giv er mean rns comp

 

Table 13: Average Variance Reduction for within sample 

Method 

OLS  0.92864 93.36% 83.67% 89.69% 91.41%
BVAR  91.41%0.93292 93.36% 83.60% 89.68%
VEC 0.93740 93.35%  %M 83.52% 89.66% 91.41
DVEC-GARCH 0.95885 93.26% 83.07% 89.52% 91.36%
DVEC-GARCH 

89.71%
Time 

Varying 92.96% 83.24%  91.44%
 

The variance reduction depicts a slightly different picture, for sma  horizon

o io rom OLS is perform er than r com

ller time s the 

ptimal hedge rat derived f ing bett  the othe peting 

 16



strategies whereas for longer time horizons it is DVEC-GARCH time varying hedge ratio 

h* 1-Day 5-Day 10-Day 20-Day 

performs better. But the out of sample mean returns and average variance reduction vote 

for time varying hedge ratio from the DVEC-GARCH specification. Table 14 and Table 

15 present the results. 

 

Table 14: Mean Return for out of sample 

Method 

OLS  0.92864 0.029% 0.024% 0.024% 0.024%
BVAR 0.9 0.020% 0.020%3292 0.028% 0.020%
VEC 0.93740 0.027%M 0.015% 0.015% 0.015%
DVEC-GARCH - - -0.95885 0.025% 0.008% 0.008% 0.008%
DVEC-GARCH 

0.037% 0.026% 0.025%
Time 

Varying  0.025%
 

Tabl age Varia uctio  of sam

1-D 5-Day 10-Day 20-Day 

e 15: Aver nce Red n for out ple 

Method h* ay 

OLS  0.92864 91.92% 93.20% 93.27% 93.16%
BVAR  93.07%0.93292 91.84% 93.11% 93.19%
VEC 0.93740 91.75%  %M 93.00% 93.09% 92.97
DVEC-GARCH 0.95885 91.25% 92.43% 92.56% 92.44%
DVEC-GARCH 

92.36% 93.35% 93.37%
Time 

Varying  93.18%
 

 
6

s 

uture prices behave differently. In a free capital mobile world with an 

creased volatility the need for an effective hedging strategy is highly imperative for the 

. Conclusion 

 
The conventional naïve strategy of 1:1 position for hedging has faced several criticism

as the spot and f

in

fund managers to optimize. This paper tries to give an overview of the competing models 

in calculating optimal hedge ratio. The effectiveness of these strategies is compared with 

mean returns and average variance reduction with respect to the unhedged position.  

Daily data on NSE Stock Index Futures and S&P CNX Nifty Index for the time period 
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from 4th September 2000 to 4th August 2005 has been considered for developing the 

optimal hedge ratio and the data from 5th August 2005 to 19th September 2005 has been 

considered for out of sample validation. The results clearly establishes that the time 

varying hedge ratio derived from DVEC-GARCH model gives a higher mean returns 

compared to other counterparts. On the average variance reduction front the DVEC-

GARCH model gives better performance only in the long time horizons compared to the 

simple OLS method that scores well in the short time horizons.  The DVEC-GARCH 

model imparts a slight edge over the OLS in the out of sample validation.  This DVEC-

GARCH model cannot be ignored for its modeling complexities as it provides an 

improved outcome in terms of effective hedging against simple naïve and other 

strategies. However, from a cost of computation point of view, given the complexities 

involved in estimating the DVEC-GARCH model, one can equally consider the simple 

OLS strategy that performs well at the shorter time horizons. 
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