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Value-At-Risk In Stock And Forex Markets In India: An Application Of The  New 

Transformation-Based Approach 

 

Abstract 

We consider a case of VaR analysis when adequately long historical return series for a portfolio/asset 

is available. Though the primary task here is to estimate the quantile of return distribution, a potential 

difficulty occurs when returns follow fait-tailed and/or skewed distribution making the simple and 

convenient normality assumption unrealistic. We also found that the returns in stock and forex 

markets in India do not follow normal distribution. In order to handle with this non-normality while 

estimating VaR, we adopted the transformation-based strategy adopted by Samanta (2003). The 

performance of the transformation-based VaR models is compared with two competing VaR models. 

Empirical results are quite interesting and identify the transformation-based method quite useful and 

sensible.    
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1. INTRODUCTION 

The Value-at-Risk (VaR), in recent years, has emerged as an important tool for managing financial 

risks.  Though proposed originally for handling ‘market risk’, domain of VaR application is soon 

found much wider and theoretically VaR is applicable even for managing several other financial risks, 

such as, credit risk, operational risk. In it’s role as risk management tool, VaR is useful for several 

purposes; (a) VaR simply provides a benchmark risk measure, so useful to compare risk involved in 

different portfolios; (b) VaR is a measure of potential loss from a portfolio; (c) it is also a crucial 

factor for determining capital charge for market risk exposure (Jorian, 2001; Wilson, 1998).  

 

The VaR, when used for market risk, gives a single number that represents the extent of 

possible loss from an investment portfolio due to market swings in future. The concept is defined in 

a probabilistic framework and VaR provides an upper-limit of loss from a portfolio in such a fashion 

that the instance of actual loss exceeds the VaR during a predefined future time-period has certain 

fixed/predefined probability. A VaR can also be linked to a confidence level (instead of probability 

level), which simply indicates the probability that the underlying loss does not exceed the VaR. Also 



note that confidence level is generally reported in percentage form (i.e. confidence level is derived as 

100 multiplied with the probability that the loss remains within VaR).  Thus, the relationship between 

probability level p and confidence level c is described as c=100*(1-p).    

 

Two important terminologies associated with any VaR estimate are the ‘holding period’ and 

the ‘confidence level’. While the terms ‘holding period’ refer to the (future) investment horizon, the 

other terminology is linked to the probability that the portfolio loss would not exceed the VaR 

number.  It is important to note that for a given holding period, VaR number will increase (decrease) 

with the rise (fall) of confidence level. Similarly, for a given confidence level, VaR has positive 

association with the holding period – longer is the holding period higher is the VaR. So, the choice of 

‘confidence level’ and ‘holding period’ would depend on the purpose of estimating the VaR measure. 

 

The VaR for a portfolio can be estimated by analysing the probability distribution of the 

respective portfolio’s return - the VaR is linked to a suitable percentile/quantile of the underlying 

distribution.  So, if the return follows a normal distribution, then using the properties of normal 

distribution, a percentile can be derived from the corresponding percentile of standard normal 

distribution (which is readily available from the standard normal distribution table) and mean and 

standard deviation of the underlying distribution. But in reality, financial market returns seldom 

follow normal distribution, and the task of estimating VaR has been a challenging one. 

It is well recognised that distributions of financial market returns generally possess fatter tails 

than normal distribution and are skewed. The presence of either thicker tails (excess-kurtosis) or 

significant skewness or both indicates the non-normality of the underlying distribution. If the specific 

form of the non-normality were know, one would have easily estimate the VaR from the percentiles 

of the specific distributional form. But in reality the form of the underlying distribution is not known 

and one has to discover it from the data.  Here one is essentially facing a decision-making problem of 

selecting one model from many possible alternatives. As well know, the class of non-normal 

distributions is extremely wide for it includes any possible (continuous) distributions other than 

normal. The VaR estimation from a mis-specified model may cost havoc to a company and risk 

managers cover these hazards under what is known as ‘model risk’ (Christoffersen, et al, 2001). 

Selection of most accurate model is (perhaps) the best way of minimizing/eliminating the model risk. 

The conventional approaches to handle non-normality fall under three broad categories; (i) 

non-parametric approaches, such as, historical simulation; (ii) fitting suitable non-normal or mixture 

distribution; (iii) modeling the distribution of extreme return or by modelling only the tails of return 

distribution. The non-parametric alternatives like historical simulation do not assume any specific 



form of the return distribution and is quite robust over distributional forms. Besides, these 

techniques are easy to understand and implement. But this approach suffers from the lack of 

analytical flexibility and several other disadvantages of what non-parametric approaches share. 

Alternatively, one can simply fit the parametric form of a suitable non-normal distribution to the 

observed returns. The class of distributional forms considered would be quite wide including, say, t-

distribution, mixture of two normal distribution, hyperbolic distribution, Laplace distribution or so 

forth, (van den Goorbergh and Vlaar, 1999; Bauer 2000; Linden, 2001). The non-normality, 

particularly the excess-kurtosis problem can also be captured through a class of conditional 

heteroscedasticity models   The third category, which is also parametric, takes help of extreme value 

theory and models either the distribution of maximum/minimum return or only the tails of return 

distribution. The parametric approaches are extremely useful for analytical purpose but identification 

of actual/appropriate parametric form is extremely difficult.   

Another sensible strategy to deal with non-normality while estimating VaR, as proposed 

recently by Samanta (2003), would involves transforming the (non-normal) return to a (near) normal 

variable (hence forth we call this as “transformation-based strategy”). Once portfolio returns are 

transformed into normal variates, one would first derive the suitable percentile for the transformed 

return distribution, which by construction follows a normal distribution. Applying the properties of 

the normal distribution, this task is easy. Finally this percentile (for transformed series) can be 

inverted (by applying the inverse transformation) to derive the percentile of the original return. 

Samanta (2003) shows that the empirical application of the new strategy to returns from selected 

stock price index in USA and India provides quite encouraging results. In this study we made an 

attempt to examine the suitability of the transformation-based approach of VaR for Stock and 

foreign exchange (FOREX) markets in an emerging market, viz., India. The organisation of the rest 

of the study is as follows. In Section 2, a brief description of VaR as well as techniques for evaluating 

accuracy of VaR estimates is given. Section 3 deals with the new transformation-based strategy. 

Section 4 presents the empirical results. Finally, Section 5 concludes. 

 

2. THE CONCEPT OF VAR  

The VaR is a numerical measure of the amount by which a financial position in a risk category could 

incur loses due to, say, market swings (market risk) during a given holding period. As mentioned 

earlier, the measure is defined under a probabilistic framework. If Wt denotes the value of the 

financial assets in the financial position at time instance t, the change in value of the position from 

time t to t+k would be ∆Wt(k) = (Wt+k - Wt). At time point t, xt = ∆Wt(k) is unknown and can be 

thought of a random variable. Let, f(x, β) denotes the probability density function of xt, β being the 



vector of unknown parameters. As discussed by Tsay (2002), the VaR (at time point t) of a long-

position over time horizon k with probability p, i.e. 100*(1-p) percent confidence level, is defined 

through the identity,  

                                         ∫
∞−

-VaR

),( dxxf β = p                                                                       ….. (1) 

The holder of a long financial position suffers a loss when ∆Wt(k) < 0 and the VaR defined 

in equation (1) will be positive for small p (conventionally p=0.01 or 0.05). In this case, estimation of 

VaR depends on the left tail of the distribution of ∆Wt(k). Here VaR signifies maximum loss attached 

to the probability level p. 

 

In the case of a short financial position, a loss is incurred when ∆Wt(k) > 0 for underlying 

assets and for estimating VaR one has to study the right-tail of the distribution of ∆Wt(k). In 

particular, the VaR (for time horizon k with probability p) at time t would be determined satisfying 

the equation. 

                                         ∫
∞

VaR

),( dxxf β = p                                                                           ….. (2) 

Thus, for estimating VaR, both left and right tails of the distribution of ∆Wt(k) are 

important; the type of financial position (i.e. whether long or short) would indicate the specific tail 

(i.e. whether left tail or right tail) of the distribution. One may note that the VaR with probability p 

defined in equation (1) is actually the quantile corresponding to left/lower tail probability p. Similarly, 

the one defined in equation (2) corresponds to the right-tail probability p and hence to left tail 

probability (1-p).  

 

2.1 SOME ISSUES WHILE ESTIMATING VAR 

In practice, distribution of return (either percentage change or continuously-compounded/log-

difference1) of the financial position, instead of ∆Wt(k) defined above, is modeled and thus, the VaR 

would be estimated based on quantile of the underlying return distribution. If ξp denotes the quantile 

corresponding to left-tail probability p of distribution of k-period percentage change, then k-period 

VaR for long and short financial positions would be [(ξp/100)Wt] and [(ξ1-p/100)Wt], respectively. 

Alternatively, if ξp represents the quantile for log-return (in per cent), then VaR for long and short 

                                                 
1 Note that ∆Wt(k) is the change in value of the assets in the financial position from time point t to (t+k) and the k-period return would be 
measured by [100*{∆Wt(k)/Wt}]. Another widely used form of k-period return, known as log-return, is defined by [100{loge(Wt+k) – 
loge(Wt)}]. Through out the article, the base of logarithmic transformation is ‘e’ and therefore, anti-log (i.e. the inverse of log-
transformation) of a real number x is anti-log(x) = ex; sometimes denoted by anti-log(x) = exp(x).  



financial positions would be [{exp(ξp/100)-1}Wt] and [{exp(ξ1-p/100)-1}Wt], respectively2. The 

multi-period VaR may be derived based on estimated one-period VaR (under certain assumptions).  

 

Sometimes quintiles of return distribution are termed as ‘relative VaR’ (see for instance, 

Wong, et al., 2003). On this perception, the VaR for change in value may be termed as 

‘absolute/nominal VaR’. Thus, the relative VaR using log-return series would be [ξp/100] for a ‘long 

position’ and  [ξ1-p/100] for a ‘short position’. Through out this paper, however, we use the single 

term VaR to indicate either ‘nominal VaR’ or ‘relative VaR’, the actual understanding would be made 

from the contextual meaning. 

 

2.2. AVAILABLE TECHNIQUES FOR ESTIMATING VAR 

The central to any VaR measurement strategy has been the estimation of quantiles/percentiles of 

change in value or return of the portfolio. If the distribution of the change in value or return were 

normal, then one would have simply estimated the mean and standard deviation of the normal 

distribution and hence estimate the implied percentiles. But the biggest practical problem of 

measuring VaR is that the observed return series generally do not follow normal distribution. It is 

now well recognized that the returns in financial markets follow leptokurtic (fat-tailed) and 

occasionally skewed distribution. The deviation from normality intensifies the complexity in 

modelling the distribution of returns and hence estimation of quantiles and VaR.  There has been a 

plethora of techniques to handle non-normality in the context of quantile estimation. Available 

methodologies can be classified under three broad classes, viz., (i) ‘historical simulation’, a model-free 

approach for estimating quantile; (ii) parametric approach for fitting non-normal (fat-tailed and/or 

skewed) distribution; and (iii) extreme value theory which models either the distribution of extreme 

observations or tails of underlying distribution. Details of the methods stated above are available in 

standard books/papers on the topic (see for instances, van den Goorbergh and Vlaar, 1993; Bauer, 

2001; Sarma et al, 2003) and for the sake of brevity we do not discuss those here. For a summary of 

select approaches one may refer to Samanta and Nath (2003). 

2.2.1 NORMAL (COVARIANCE) METHOD 

The simplest possible VaR method is the normal (covariance) method. If σµ and are mean and 

standard deviation, respectively, for return at a future date then VaR would be calculated from the 

expression ( )( ασµ z+ , where zα represents the percentile corresponding to left-tail probability α 

of the standard normal distribution and α is the probability level attached to VaR numbers. This 

                                                 
2 As stated earlier, exp[.] functions in the expressions of VaR are due to the base ‘e’ chosen for  log-transformation.  



approach is static in a sense that it models the unconditional return distribution (van den Goorbergh 

and Vlaar, 1999).  

As known, unconditional return distribution generally shows fatter tails (leptokurtosis or 

excess-kurtosis) than normal, which means that normality assumption to unconditional return 

distribution may turn out to be unrealistic. It is also known that  fatter tails may also be reflection of 

the changing conditional volatility which can be modelled under suitable simple conditional 

heteroscedastic models like exponentially weighted moving average used in RiskMetrics 

(J.P.Morgan/Reuters, 1996) or more advanced models like ARCH, GARCH and so forth (Engle 

1982; Bollerslev, 1986; Wong et al., 2003).   

 

2.2.2 METHOD USING TAIL-INDEX 

The fat tails of unconditional return distribution can also be handled through extreme value theory 

using, say, tail-index, which measures the amount of tail fatness. One can therefore, estimate the tail-

index and measure VaR based on the underlying distribution. The basic premises of this idea stems 

from the result that the tails of every fat-tailed distribution converge to the tails of Pareto 

distribution. The upper tail of such a distribution can be modeled as, 

 

Prob[X > x] ≈ Cα |x|–α    (i.e. Prob[X ≤ x] ≈ 1 - Cα |x|-α);   x > C                                  ….. (3)                                          

Where, C is a threshold above which the Pareto law holds; |x| denotes the absolute value of x and 

the parameter α is the tail-index.  

Similarly, lower tail of a fat-tailed distribution can be modeled as 

Prob[X > x] ≈1 - Cα |x| –α    (i.e. Prob[X ≤ x] ≈ Cα |x| -α);   x < C                                  ….. (4)   

Where, C is a threshold below which the Pareto law holds; |x| denotes the absolute value of x and 

the parameter α is the tail-index.  

      In practice, observations in upper tail of the return distribution are generally positive and 

those in lower tail are negative. Thus, both of Eq. (3) and Eq. (4) have importance in VaR 

measurement. The holder of a short financial position suffers a loss when return is positive and 

therefore, concentrates on upper-tail of return distribution (i.e. Eq. 3) while calculating his VaR 

(Tsay, 2002, pp. 258). Similarly, the holder of a long financial position would model the lower-tail of 

return distribution (i.e. use Eq. 4) as a negative return makes him suffer a loss.   

 



From Eqs (3) and (4), it is clear that the estimation of VaR is crucially dependent on the estimation 

of tail-index α. There are several methods of estimating tail-index, such as,   (i) Hill’s (1975) estimator 

and (ii) the estimator under ordinary least square (OLS) framework suggested by van den Goorbergh 

(1999). We consider here the widely used Hill’s estimator of tail-index. A discussion on how to apply 

Hill’s estimator to measure VaR is given below. 

Hill’s Estimator 

For given threshold C in right-tail, Hill (1975) introduced a maximum likelihood estimator of γ = 1/α 

as 

∑
=







=

n

i

i

C
X

n 1
log1γ̂                                                                                                                 ….. (5) 

where Xi’s, i=1,2, …..,n are n observations (exceeding C) from the right-tail of the distribution.  

 

To estimate the parameters for left tail, we simply multiply the observations by –1 and repeat 

the calculations applicable to right-tail of the distribution.    

 

In practice, however, C is unknown and needs to be estimated. If sample observations come 

from Pareto distribution, then C would be estimated by the minimum observed value, the minimum 

order statistic. However, here we are not modeling complete portion of Pareto distribution. We are 

only dealing with a fat-tailed distribution that has right tail that is approximated by the tail of a Pareto 

distribution. As a consequence, one has to select a threshold level, say C, above which the Pareto law 

holds. In practice,     Eq. (5) can be evaluated based on order statistics in the right-tail and thus, the 

selection of the order statistics truncation number assumes importance. In other words, one needs to 

select the number of extreme observations n to operationalise Eq. (3). Mills (1999, pp. 186) discusses 

a number of available strategies for selecting n. The method adopted in this paper is due to Phillips, 

et al. (1996). They suggest that optimal value of n should be one, which minimises the Mean-Square-

Error (MSE) of the limiting distribution of γ̂ . To implement this strategy, we need estimates of γ for 

truncation numbers n1 = Nδ and n2=Nτ, where 0 < δ < 2/3 < τ < 1. Let jγ̂ be the estimate of γ for 

n =nj, j=1,2. Then the optimal choice for truncation number is n = [λ T2/3], where λ is estimated as 

3/2
2121 |)ˆˆ)(/)(2/ˆ(|ˆ γγγλ −= nT . Phillips et al. (1996) recommended setting δ =0.6 and τ = 0.9 

(see Mills, 1999, pp. 186).   

 

 



Estimating VaR Using Tail Index 

Once tail-index α is estimated, the VaR can be estimated as follows (van den Goorbergh and Vlaar, 

1999). Let p and q (p < q) be two tail probabilities and xp and xq are corresponding quantiles. Then p 

≈ Cα (xp)-α and q ≈ Cα (xq)-α indicating that xp ≈ xq (q/p)1/α. Assuming that the threshold in the left-

tail of the return (in per cent)  distribution corresponds to the  m-th order statistics (in ascending 

order), the estimate of xp be 

γ̂

)(p np
mRx̂ 







= m                                                                                                                    ….. (6) 

where R(m) is the m-th order statistics in the ascending order of n observations chosen from tail of 

the underlying distribution; p is the given probability level for which VaR is being estimated; γ̂ is the 

estimate of γ. Knowing the estimated quantile px̂ , one can easily calculate the VaR. 

 

As stated above, the methodology described above estimates tail-index and VaR for right tail 

of a distribution. To estimate the parameters for left tail, we simply multiply the observations by –1 

and repeat the calculations.    

 

3. THE NEW TRANSFORMATION BASED APPROACH TO MEASURING VAR  

As seen above, the main difficulty for estimating VaR has been the non-normality of return 

distribution. The existing literature has handled the problem directly in the sense that the non-normal 

characteristic of return is directly modelled through several alternatives, such as, Historical Simulation 

(non-parametric), fitting observed return distribution with some non-normal class of distribution 

(such as, t-distribution, mixture distribution), or modelling tails behaviour of extreme observations 

(for a review of these methods, see for instance, van den Goorbergh and Vlaar, 1993; Samanta and 

Nath, 2003). In a recent study Samanta (2003) proposed a new transformation based approach. He 

also got quite encouraging results for two stock price index portfolios. The new transformation-

based approach proposed by Samanta (2003) is presented below;  

3.1. BASIC PREMISES  

If the underlying variable (say, change in portfolio value or return) rt is not normally distributed, let 

there exists a one-to-one continuous function of rt, say g(rt,θ), θ being a constant parameter, which 

follows a normal distribution. The function form of g(.) would take various different forms, as 

available in the literature. Because g(rt,θ) is a normal variable, its mean and standard deviation can be 

estimated easily based on the sample observations, provided θ is given. In reality, however, θ is 



unknown and thus needs to be estimated from the observed data. Let µg and σg represent the 

estimated mean and standard deviation of g, respectively. As g(.) represents a one-to-one continuous 

function, for any real valued number γ we have the events { g(rt,θ) < γ } and   { rt < g-1(γ, θ) } are 

equivalent in the sense of probability. In other words, following identity with respect to probability 

measure holds, 

 

            Prob[ g(rt,θ) < γ ] = Prob[rt < g-1(γ,θ)]                                                                      …..(7) 

 

Where Prob(.) denotes the probability measure. 

 

By replacing γ in identity (7) with the p-th quantile of the distribution of g(rt,θ), say νp, we 

get the p-th quantile of the unknown distribution of rt as ξp=g-1(νp,θ)]. As g(rt,θ) follows a normal 

distribution, its quantiles are simply {µg + τp σg}, where τp is the p-th quantile of standard normal 

distribution. We know that τ0.01 = -2.33 and τ0.05 = –1.65. As the standard normal distribution is 

symmetric about zero, the values of τ0.99 and τ0.95 are 2.33 and 1.65, respectively.  Now, given the 

market value of the portfolio and estimated quantiles of underlying return distribution, VaR can be 

estimated easily. 

 

The idea stated above is intuitively appealing and also easy to understand. But we need to 

know the functional form of g(.) and also to estimate the unknown transformation parameter θ. The 

literature on the families of transformations to normality/symmetry comes to the rescue. 

 

3.2. TRANSFORMATIONS OF A RANDOM VARIABLE TO NORMALITY 

The attempt towards transforming a random variable x to normality dates back at least to the work 

of Box and Cox (1964). Thereafter, several other classes of transformations to normality have been 

proposed in the literature. Some of the useful transformations for our purpose would be the signed 

power transformation (see, for instance, Bickel and Doksum, 1981), the modulus transformation of 

John and Draper (1980) and the more recent transformation class offered by Yeo and Johnson 

(2000). 

The signed power transformation to convert a random variable to normal one has the following 

general form   

                           gSP(x,ν) = sign(x) {|x|ν -1 } /ν,   ν > 0                                                     ….. (8) 



Where sign(x) and |x| are sign and absolute value of x, respectively and ν is the transformation 

parameter needs to be estimated from the data on x.  

For transforming a symmetric distribution to near normality, John and Draper (1980) suggested the 

modulus transformation   

                        gJD(x,δ) = 




=+
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δ
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xsign
xsign

                                       ….. (9) 

As per the existing literature, it appears that both, gSP(x,ν) and gJD(x,δ) are good to handle 

kurtosis problem. But these transformations have serious drawbacks when applied to skewed 

distribution. Particularly, if the distribution of x is mixture of standard normal and gamma densities, 

then the distributions of both gSP(x,ν) and gJD(x,δ) are bimodal and look far away from normal. 

Besides, in the case of gSP(x,ν), likelihood function is undefined when some observations of x are 

zero (Burbidge, et al, 1988). To circumvent with these problems, Yeo and Johnson (2000) proposed 

following new family of transformations 

                          gYJ(x,λ) = 
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                 ….. (10) 

The parameter λ of gYJ(x,λ) can be estimated by maximum-likelihood technique (Yeo and Johnson, 

2000). 

 

3.3. SELECTION OF TRANSFORMATION TO NORMALITY 

We come across several alternative families of transformations to convert a non-normal variable to a 

near-normal variable. Thus, any exercise on application of normality transformation faces the 

problem of selecting appropriate family of transformation from various competing classes. Though, 

theoretical answer to this issue is not very clear, the basic features of each family of transformation 

discussed above definitely provide certain useful clue. Particularly, three important points are noticed 

from above; First, to convert a symmetric (or near symmetric) distribution to normality, family of 

transformation gJD(x,δ)) is useful. The transformation gSP(x,ν) is not of much use in our case mainly 

for its limitation in handling zero observations in likelihood function. Second, to convert a skewed 

distribution to symmetry gYJ(x,λ) may be used. Third, if a distribution is non-normal due to both 

skewness and kurtosis problems, the theory on appropriate choice of power transformation is not 

clear. In such a scenario, a heuristic approach would suggest to derive first gYJ(x,λ) to achieve 



symmetry and then to apply gJD(x,λ) on the already transformed near-symmetric distribution. One, 

however, need to study the properties of parameter estimates under such a case. 

3.4. IMPLEMENTATION OF THE TRANSFORMATION-BASED APPROACH 

While implementing the transformation-based approach of VaR estimation, we first need to know 

whether the underlying distribution is normal or not. If the actual distribution is normal, estimation 

of VaR would be done by simple normality based techniques. Thus, a test for normality should 

precede any attempt to adopting transformation-based approach. It is also known that a departure 

from normality may take place for three possible reasons, (i) non-zero measure of skewness; (ii) 

deviation of measure of kurtosis from 3 (i.e. excess kurtosis is zero); (iii) both of previous two 

reasons. Denoting β1 and β2 as measures of skewness and excess kurtosis3, respectively, we have 

following three hypotheses in this regard.    

(i) H01: (β1,β2)=(0,0), which will be tested against the alternative hypothesis                  H11: 

(β1,β2)≠ (0,0).  

(ii) H02: β1 =0, which will be tested against the alternative hypothesis H12: β1 ≠ 0 

(iii) H03: β2 =0, which will be tested against the alternative hypothesis H13: β2≠ 0 

 

In our study, we tested the null hypothesis H01 by using the Jarque and Bera (1987) test statistics 

Q = n[ (b1)2/6 + (b2)2/24], where b1  and  b2 are sample estimates of β1 and β2, respectively and n is 

the number of observation used to derive the said estimates. Under normality, Q is asymptotically χ2 

variable with 2 degrees of freedom. Also note that under normality, each of b1  and  b2 is also 

asymptotically normally distributed with mean zero and respective variances 6/n and 24/n implying 

that each of [n (b1)2/6] and [n (b2)2/24] is asymptotically χ2 variable with 1 degree of freedom (See 

Gujarati, 1995 for a discussion on Jarque-Bera (1987) test of normality and related issues).  

 

With this background, the proposed transformation-based VaR modelling approach can be 

implemented through following steps. 

 

• Step 1: Test the return series for normality. If normality is accepted, the estimation of VaR 

will depends upon the quantiles of normal distribution. Otherwise, normality may be 

rejected for any of the three possible cases of measures of skewness (β1) and excess-kurtosis 

                                                 
3 The measure of skewness β1 = µ3/µ2(3/2) and measure of kurtosis = µ4/µ22 indicating that the excess kurtosis β2 = µ4/µ22 – 3, where µj 
denotes the j-th order central moment, j ≥ 2.  For normal distribution,     β1 = β2 = 0. 



(β2), viz. Case (i) β1 ≠ 0 and β2 = 0; Case (ii) β1 = 0 and β2 ≠ 0, and Case (iii) β1 ≠ 0 and β2 ≠ 

0. 

• Step 2: If normality is rejected for Case (i) of Step 1, then apply gYJ(x,λ) transformation for 

suitably chosen λ. A standard practice is to estimate λ via a grid-search method by 

maximizing log-likelihood function over a set of potential alternatives of λ. One may also 

select λ by minimizing the magnitude of measure of skewness. If normality is rejected for 

Case (ii) of Step 1, then apply gJD(x,δ) transformation. The parameter δ may be estimated 

either by maximizing log-likelihood function or by minimizing extent of excess kurtosis over 

a set of potential alternative. If normality is rejected for Case (iii), we may proceed via two 

phases; first apply gYJ(x,λ) on the original variable and then pass the transformed variable so 

obtained through gJD(x,δ) transformation.   

• Step 3: Estimate the mean and standard deviation of the near-normal transformed variable 

in   step 2. Using these statistics and the known quantiles of the standard normal 

distribution, quantiles of the transformed near-normal distribution are estimated.  

• Step 4: Apply inverse transformation on these quantile to derive the quantiles of the 

underlying return distribution. 

• Step 5: Derive VaR using current portfolio value and estimates of quantiles of return 

distribution.  

 

4. AN APPLICATION TO STOCK AND FOREX MARKETS DATA IN INDIA 

In order to demonstrate the possible gain from the new transformation-based VaR modelling 

approach, it is proposed to assess the performance of proposed approach vis-à-vis select other 

available VaR models. As stated earlier, the proposed empirical study focuses on the Forex market in 

India. The database and strategy of empirical analysis are briefly stated below; 

 

4.1. DATA 

The data used in this study are the daily stock price indices and exchange rates of Indian Rupee. For 

VaR are calculated at portfolio level, it would be interesting to examine the accuracy of different VaR 

model with respect to certain stock portfolio. However, composition/components of portfolio 

differs investors to investors, and it is extremely difficult to suggest any portfolio, which is optimal to 

all investors. But at the same time, it is neither practical nor manageable to consider all possible 

stocks portfolio as there would be a large number of individual securities and possible number of 

portfolios would be astronomically large. A somewhat useful strategy, as adopted by many other 



researchers also (Bauer, 2000; Christoffersen, et al, 2001; Sarma, et al, 2003) would be to examine the 

VaR models with respect to certain stock indices, which by construction, represent well-diversified 

stock portfolio. On this understanding, we consider daily data on three stock price indices (closing 

price) published by the National Stock Exchange of India Limited (NSEIL), viz, (i) S & P CNX 

Nifty;  (ii)  CNX Nifty Junior; and (iii) S & P CNX Defty, for the period from April 1, 1999 to March 

31, 2005 (which gives 1509 daily observations on each stock price index considered4).  

 

In regards to exchange rate, we donot have readily available indices/portfolio with daily 

frequency. Though Real or Nominal Effective Exchange Rates (REER or NEER) are compiled 

based on several foreign currencies and could be considered to track behaviour of certain typical 

portfolio of foreign currencies, use of these series for VaR analysis is limited for the low data 

frequency – the RRER and NEER in India are compiled at monthly frequency (instead of daily 

frequency).  So, we consider daily data on spot rate of major four world currencies, viz., US Dollar, 

British Pound Sterling, Euro Currency and Japanese Yen, in terms of Indian Rupee. Though we do 

recognize that in reality currency portfolio may include multiple foreign currencies, one still may 

argue that each currency alone represents a typical portfolio of single currency. The idea of validating 

VaR models with respect to exchange rates for single foreign currency is also not an exception in the 

literature for many earlier studies also followed the same path (see for instance, Bauer, 2000). 

Database for forex market covers the period from April 5, 1999 to March 31, 2005 and contains 

1462 daily observations on each exchange rate5. 

 

4.2. COMPETING VAR MODELS  

We propose to assess the performance of the transformation-based VaR model vis-à-vis couple of 

widely used techniques, such as, Normal (variance-covariance) method and the extreme-value 

approach using Hill’s Estimator (Hill, 1975). All these methods are applied for univariate series on 

portfolio returns.  Also the models we considered are static in a sense that we donot model 

conditional variance of returns. As known, generally observed leptokurtosis (excess-kurtosis) 

behaviour of unconditional returns could be due to presence of changing conditional volatility which 

could be modelled under suitable simple conditional heteroscedastic models like exponentially 

weighted moving average used in RiskMetrics (J.P.Morgan/Reuters, 1996) or more advanced models 

                                                 
4 Data on Stock price indices are collected from the website of the National Stock Exchange of India Limited (www.nse-
india.com). 
5 The exchange rate data are collected from various publications of the Reserve Bank of India (RBI). Also see RBI’s website 
(www.rbi.org.in). 



like ARCH, GARCH and so forth (Engle 1982; Bollerslev, 1986; Wong et al., 2003).  In our empirical 

exercise we handle leptokurtotic phenomenon of return distribution, if any, by modelling directly the 

unconditional distribution of return6. So, competing VaR models in our analysis are (i) Normal 

(covariance) method; (ii) Tail-index based method using Hill’s estimator; and (iii) the new 

transformation-based method. 

 

4.3. STRATEGIES TO EVALUATE VAR MODELS 

The accuracy of VaR estimates obtained from competing VaR models would be assessed under 

several frameworks, such as, (i) backtesting; (ii) Kupieck’s test; (iii) loss-function based evaluation of 

VaR estimates. 

 

Basle Committee Guidelines - Backtesting 

As recommended by Basle Committee, central banks do not specify any VaR model, which should 

be used by their supervised banks. Rather  ‘internal model approach’ is suggested wherein banks are 

allowed to adopt their own VaR model. There is an interesting issue here. As known, VaR is being 

used for determining the capital charge – larger the value of VaR, larger is the capital charge. Because 

larger capital charge implies less profit, banks may have an inclination towards adopting a model that 

produce lower VaR estimate since that helps to reduce their capital charge. In order to eliminate such 

inertia of supervised banks, Basle Committee has set out certain requirements on VaR models used 

by banks to ensure their reliability (Basel Committee, 1996a,b) as follows; 

 

(1) 1-day and 10-day VaRs must be estimated based on the daily data of at least one year 

(2) Capital charge is equal to three times the 60-day moving average of 1% 10-day VaRs, or 1% 

10-day VaR on the current day, which ever is higher. The multiplying factor (here 3) is 

known as ‘capital multiplier’. 

Further, Basle Committee (1996b) provides following Backtesting criteria for an internal VaR model 

(see van den Goorbergh and Vlaar, 1999; Wong et al., 2003, among others) 

 

(1) One-day VaRs are compared with actual one-day trading outcomes. 

(2) One-day VaRs are required to be correct on 99% of backtesting days. There should be at 

least 250 days (around one year) for backtesting. 

                                                 
6 Some studies have reported that application of conditional heteroscedastic models does not necessarily improve the VaR estimation. For 
example, Wong et al. (2003) present empirical evidence that ARCH- and GARCH-based VaR models consistently fail to meet Basle’s 
backtesting criteria. 



(3) A VaR model fails in Backtesting when it provides 5% or more incorrect VaRs. 

(4) If a bank provides a VaR model that fails in backtesting, it will have its capital multiplier 

adjusted upward, thus increasing the amount of capital charges. 

  

For carrying out the Backtesting of a VaR model, realized day-to-day returns of the portfolio are 

compared to the VaR of the portfolio. The number of days when actual portfolio loss was higher 

that VaR provides an idea about the accuracy of the VaR model. For a good VaR model, this number 

would approximately be equal to the 1 per cent (i.e. 100 times of VaR probability) of back-test 

trading days. If the number of violation (i.e. number of days when loss exceeds VaR) is too high, a 

penalty is imposed by raising the multiplying factor (which is at least 3), resulting in an extra capital 

charge. The penalty directives provided by the Basle Committee for 250 back-testing trading days is 

as follows; multiplying factor remains at minimum (i.e. 3) for number of violation upto 4, increases to 

3.4 for 5 violations, 3.5 for 6 violations, 3.65 for violations 8, 3.75 for violations 8, 3.85 for violation 

9, and reaches at 4.00 for violations above 9 in which case the bank is likely to be obliged to revise its 

internal model for risk management (van den Goorbergh and Vlaar, 1999).   

 

Statistical Tests of VaR Accuracy 

The accuracy of a VaR model can also be assessed statistically by applying Kupiec’s (1995) test (see, 

for example, van den Goorbergh and Vlaar, 1999 for an application of the technique). The idea 

behind this test is that the VaR-violation (i.e. proportion of cases of actual loss exceeding VaR 

estimate) should be statistically equal to the probability level for which VaR is estimated. Kupiec 

(1995) proposed a likelihood ratio statistics for testing the said hypothesis.  

 

If z denotes the number of times the portfolio loss is worse than the true VaR in the sample 

(of size T, say) then z follows a Binomial distribution with parameters (T, p), where p is the 

probability level of VaR. Note that here z is actually the summation of It at T time points. Ideally, the 

more z/T closes to p, the more accurate estimated VaR is. Thus the null hypothesis z/T = p may be 

tested against the alternative hypothesis z/T ≠ p. The likelihood ratio (LR) statistic for testing the 

null hypothesis against the alternative hypothesis is 

LR = 2 ( )
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Under the null hypothesis, LR-statistic follows a χ2-distribution with 1-degree of freedom. 

 



The VaR estimates are also interval forecasts, which thus, can be evaluated conditionally or 

unconditionally. While the conditional evaluation considers information available at each time point, 

the unconditional assessment is made without reference to it. The test proposed by Kupiec provides 

only an unconditional assessment as it simply counts exceptions (i.e. VaR violations) over the entire 

backtesting period (Lopez, 1998). In the presence of time-varying volatility, the conditional accuracy 

of VaR estimates assumes importance. Any interval forecast ignoring such volatility dynamics may 

have correct unconditional coverage but at any given time, may have incorrect conditional coverage. 

In such cases, the Kupiec’s test has limited use as it may classify inaccurate VaR as acceptably 

accurate. 

Christoffersen (1998) develops a three step testing procedure: a test for correct 

unconditional coverage (which is same as Kupiec’s test), a test for ‘independence’, and a test for 

correct ‘conditional coverage’ (Berkowitz and O’Brien, 2002; Sarma, et al., 2003). All these tests use 

Likelihood-Ratio (LR) statistics.  

Evaluation of VaR Models Using Loss-Function 

All the tests mentioned above, ultimately deal with the frequency of the occurrence of VaR 

violations, either conditional or unconditional, during the backtesting trading days. These tests, 

however, do not look at the extent/magnitude of additional loss (excess of estimated VaR) at the 

time of VaR violations/failures.  However, a portfolio manager may prefer the case of more frequent 

but little additional loss than the case of less frequent but huge additional loss. The underlying VaR 

model in the former case may fail in backtesting but still the total amount of loss (after adjusting for 

penalty on multiplying factor if any) during the backtesting trading days may be less than that in later 

case. So long as this is the case, a portfolio manager may even prefer to accept a VaR model even if it 

fails in backtesting and may be ready to pay penalty (for excess number of VaR violations). This 

means that the objective function of a portfolio manager is not necessarily be the same as that 

provided by the backtesting. Each manager may set his own objective function and try to optimize 

that while managing market risk. But, loss-functions of individual portfolio managers are not 

available in public domain and thus, it would be impossible to select a VaR model appropriate for all 

managers. However, discussion on a systematic VaR selection framework by considering a few 

specific forms of loss-function would provide insight into the issue so as to help individual manager 

to select a VaR model on the basis of his own loss-function. On this perception, it would be 

interesting to illustrate the VaR selection framework with the help of some specific forms of loss-

function.  



The idea of using loss-function for selecting VaR model, perhaps, is proposed first by Lopez 

(1998). He shows that the binomial distribution-based test is actually minimizing a typical loss-

function – gives score 1 for a VaR exception and a score 0 otherwise. In other words, the implied 

loss-function in backtesting would be an indicator function It which assumes a value 1 at time t if the 

loss at t exceeds corresponding VaR estimate and assumes a value zero othersise. However, it is hard 

to imagine an economic agent who has such a utility function: one which is neutral to all times with 

no VaR violation and abruptly shifts to score of 1 in the slightest failure and penalizes all failures 

equally (Sarma, et al., 2003). Lopez (1998) also considers a more generalised loss-function which can 

incorporates the regulatory concerns expressed in the multiplying factor and thus is analogous to the 

adjustment schedule for the multiplying factor for determining required capital.  But, he himself see 

that, like the simple binomial distribution-based loss-function, this loss-function is also based on only 

the number of exceptions (VaR violations) in backtesting observations – with paying no attention to 

another concern, the magnitudes of loss at the time of failures. In order to handle this situation, 

Lopez (1998) also proposes a different loss-function addressing the magnitude of exception as 

follows; 
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where Losst  and VaRt, respectively, are the magnitude/amount of loss and estimated Value-at-Risk at 

time t. Lt denotes the score in loss-function at time t.  

In the spirit of Lopez (1998), Sarma et al. (2003) consider two loss-functions, viz., regulatory loss 

function and the firm’s loss function, as follows; 

Regulatory Loss Function 
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Firm’s Loss Function 
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where α represents the opportunity cost of capital. 

4.3. EMPIRICAL RESULTS 

The returns we considered are continuously compounded calculated as  

Rt=100 *[loge(Pt) – loge(Pt-1)]                                                                                              ….. (15)  



Were Pt represents stock price index or exchange rate as the case may be for t-th day in the database 

and Rt denotes corresponding daily continuously compounded return.  

 

We consider VaR in percentage form, which means that VaR number will reflect the 

maximum percentage loss with given probability and holding period. In other words, estimated VaR 

corresponds to the possible loss for a portfolio of value 100 units. We shall estimate, on the t-th day, 

the VaR for the (t+1)-th and future dates. Also we consider only the cases of lower-tail VaRs. As 

discussed earlier, the task ultimately boils down to estimation of 1st percentile (for VaR with 99% 

confidence level or equivalently with probability level p=0.01) or 5th percentile (for VaR with 

probability level p=0.05) of the return distribution. The potential difficulty would arise if the returns 

do not follow normal distribution. 

 

4.3.1 Empirical Return Distributions and Transformations to Normality  

We first examine whether return distributions could be considered as normal. As known, for a 

normal distribution measures of skewness (β1) and excess-kurtosis (β2) are all zero.  We performed 

the null hypotheses H01, H02 and H03 against the alternative hypotheses discussed earlier. Results of 

these tests for chosen stock indices are presented in Table 1. Corresponding results for exchange 

rates are reported in Table 2. In these Tables, we report the observed values of chi-square test 

statistics and corresponding probability value, denoted by ‘p-value’. A null hypothesis would be 

accepted at conventional 1% (or 5%) level of significance if the p-value of corresponding test 

statistics exceeds 0.01 (or 0.05). The results presented in Table 1 & 2 show that the p-values for the 

original return series for all the selected asset/portfolios are substantially lower than 0.01, strong 

rejection of hull hypotheses at 1% significance level (hence at 5% significance level also). We, 

therefore, decide to pass each original return series through the normality transformation so as to 

obtain transformation of returns, which follow (approximately) normal distribution.  

TABLE 1: RESULTS FOR TESTING NORMALITY OF RETURNS IN STOCK MARKET 

Asset/ 

Portfolio 

Measure of 

Skewness 

2
1χ  for Skewness 

(Testing H02) 

Excess 

Kurtosis 

2
1χ  for Excess 

Kurtosis 

(Testing H03) 

Jarque-Bera 

Statistics 

(Testing H01) 

Nifty 

 

-0.5706 81.7359** 

(0.0000) 

5.6519 2004.4556** 

(0.0000) 

2086.1915** 

(0.0000) 

Nifty Junior -0.7894 156.3937** 3.8565 933.2669** 1089.6606** 



 (0.0000) (0.0000) (0.0000) 

Defty 

 

-0.6331 100.6082** 

(0.0000) 

6.3081 2496.9364** 

(0.0000) 

1503.2489** 

(0.0000) 

Note: Figures within ( ) indicate significance level (i.e. p-value) of corresponding statistics;    ‘**’ indicates 

significant at 1% level of significance. 

TABLE 2: RESULTS FOR TESTING NORMALITY OF RETURNS IN FOREX MARKET 

Asset/ 

Portfolio 

Measure of 

Skewness 

2
1χ  for Skewness 

(Testing H02) 

Excess 

Kurtosis 

2
1χ  for Excess 

Kurtosis 

(Testing H03) 

Jarque-Bera 

Statistics 

(Testing H01) 

US Dollar 

 

-0.3010 21.1552** 

(0.0000) 

17.7319 18354.2750** 

(0.0000) 

18375.4302** 

(0.0000) 

Pound Sterling 

 

-0.0753 1.3231 

(0.2500) 

0.7373 31.7336** 

(0.0000) 

33.0567** 

(0.0000) 

Euro 

 

-0.0259 0.1568 

(0.6921) 

0.8708 44.2622** 

(0.0000) 

44.4189** 

(0.0000) 

Japanese Yen 0.0960 2.1517 

(0.1424) 

1.6844 165.6248** 

(0.0000) 

167.7766** 

(0.0000) 

Note: Figures within ( ) indicate significance level (i.e. p-value) of corresponding statistics;    ‘**’ indicates 

significant at 1% level of significance. 

 

We follow a simple two-step transformation strategy irrespective of the fact of whether the 

underlying return series is skewed/leptokurtotic (when excess-kurtosis turns out to be significantly 

different than zero). In the first step, we apply the gYJ(.,λ) transformation proposed by Yeo and 

Johnson (2000) on return, so that the transformed variable have near-symmetric distribution. The 

transformation parameter λ is estimated through a grid-search over the set of potential alternatives 

{0, 0.001, 0.002, 0.003, …., 1.999, 2}. The criteria used to choose optimal λ from the grid-search 

would be ‘maximum likelihood function’ (Yeo and Johnson, 2000) or heuristically, ‘minimum 

absolute value of skewness measure”. In the second step we handle the problem of excess kurtosis. 

Thus the transformed series (which are near-symmetric) are passed through the gJD(.,δ) 

transformation proposed by John and Draper (1980). The parameter δ is estimated via a grid-search 



over {-2, -1.999, -1.998, ……., 1.999, 2}. As earlier, the criteria for selecting optimal δ would be 

‘maximum likelihood function’ (John and Draper, 1980) or heuristically, ‘minimum absolute vale of 

excess kurtosis measure’. Based on experimentation on our database, we found that while ‘absolute 

skewness/excess-kurtosis based estimates of λ and δ work relatively better for stock indices, the 

corresponding estimates for exchange rate data are better when ‘likelihood-function’ criteria is used. 

The optimal estimates of λ and δ for a return series are chosen accordingly. We hope that the final 

transformation y= gJD{gYJ(r, λ̂ ), δ̂ }, where λ̂ and δ̂ are estimates of λ and δ, respectively for the 

return r, is a (near) normal variable. In order to verify this position, we test the hypotheses H01, H02 

and H03 (against corresponding alternative hypotheses) for all transformed variables/returns. 

Corresponding empirical results for ‘stock price indices’ and ‘exchange rate’ data are given in Table 3 

and Table 4, respectively. 

 

As seen from Table 3 and 4, application of the transformation induced normality for all 

returns considered except the one corresponding to the spot exchange rate of US Dollar against 

Indian Rupee.  But seeing carefully the Table 2 and Table 4, it appears that though the underlying 

chi-square test statistics for testing normality are significant (at 1% level) in this worst case, the 

magnitudes of underlying test statistics values (Table 4) are relatively lower for transformed variable 

(as compared to those for original return, see Table 2).     

TABLE 3: RESULTS FOR TESTING NORMALITY OF TRANSFORMATION OF RETURNS IN STOCK MARKET 

Asset/ 

Portfolio 

Transfor-mation 

Parameters 

Measure of 

Skewness 

2
1χ for 

Skewness 

(Testing H02) 

Excess 

Kurtosis 

2
1χ for Excess 

Kurtosis 

(Testing H03) 

Jarque-Bera 

Statistics 

(Testing H01) 

Nifty 

 

 

0.306δ̂
1.088λ̂

=
=  

-0.0639 1.0638 

(0.3116) 

0.0002 0.0000 

(0.9986) 

1.0239 

(0.5993) 

Nifty Junior 

 

 

0.382δ̂
1.136λ̂

=
=  

-0.1116 3.1272 

(0.0770) 

-0.0001 0.0000 

(0.9998) 

3.1272 

(0.2095) 

Defty 

 0.308δ̂
1.094λ̂

=
=  

-0.0572 0.8221 

(0.3645) 

-0.0013 0.0000 

(0.9921) 

0.8223 

(0.6623) 

Note: Figures within ( ) indicate significance level (i.e. p-value) of corresponding statistics. All test statistics presented in this table are 

statistically insignificant at 5% level of significance..  



 

TABLE 4: RESULTS FOR TESTING NORMALITY OF TRANSFORMATION OF RETURNS IN FOREX MARKET 

Asset/ 

Portfolio 

Transfor-

mation 

Parameters 

Measure of

Skewness 

2
1χ for 

Skewness 

(Testing H01) 

Excess 

Kurtosis 

2
1χ  for Excess

Kurtosis 

(Testing H03) 

Jarque-Bera 

Statistics 

(Testing H01) 

US Dollar 

 

 

.0002δ̂
1.075λ̂
−=

=  
0.1240 3.5904 

(0.0581) 

2.0822 253.0867** 

(0.0000) 

256.6772** 

(0.0000) 

Pound Sterling 

 

 

0.540δ̂
1.048λ̂

=
=  

-0.0072 0.0122 

(0.9120) 

0.0471 0.1273 

(0.7191) 

0.1415 

(0.9317) 

Euro 

 

 

0.653δ̂
1.005λ̂

=
=  

-0.0032 0.0021 

(0.9636) 

0.1149 0.7710 

(0.3800) 

0.7731 

(0.6794) 

Japanese Yen 

0.286δ̂
0.961λ̂

=
=  

-0.0204 0.0973 

(0.7550) 

0.0616 0.2215 

(0.6379) 

0.3189 

(0.8526) 

Note: ‘**’ significant at 1% level of significance.  

 

4.3.2 ESTIMATION OF VAR  

In Table 5 & 6, we present estimated 1-day VaRs at the last day of our database (i.e. March 31, 2005). 

Also given are the average 1-day VaRs in last 60 days of the database. These VaRs could be used for 

determining capital charge for the next day (i.e. April 1, 2005). All VaR estimations pertain to the 

lower-tails of return distributions and are estimated using a rolling window of size 300 days7. In other 

words, VaR for time (t+1) has been calculated at time t based on daily observations for the period 

from (t-299)-th day to t-th day in the database. For given h-days holding period, the h-days VaR can 

be calculated approximately as a function of h and 1-day VaR. As per the Basle Accord, capital 

charge for market risk in a day would be the maximum of (i) average of 10-day 99% VaRs in 

previous 60 days multiplied by a prescribed number k, known as multiplying factor, and (ii) the 10-

day 99% VaR in previous day. From Tables 5 and 6, it is clear that the estimated VaR numbers vary 

quite substantially across the models indicating that the sensitiveness of capital charge on choice of 

VaR model. 

                                                 
7 As per the guidelines one should calculate 1-day VaR based on at least one-year daily data, i.e. about 250-260 days’ data. 



TABLE 5: VAR ESTIMATION (LOWER/LEFT TAIL) FOR STOCK DATA 

p=0.05 p=0.01 Asset/ 

Portfolio Normal Tail- 

Index 

Trans.  

Based 

Normal Tail- 

Index 

Trans.   

Based 

Nifty 

 

 

2.683 

(2.679) 

2.301 

(2.369) 

2.526 

(2.501) 

3.799 

(3.810) 

4.736 

(4.755) 

4.966 

(4.975) 

Nifty Junior 

 

 

2.996 

(2.957) 

2.724 

(2.574) 

2.587 

(2.488) 

4.253 

(4.226) 

7.824 

(7.684) 

5.493 

(5.353) 

Defty 

 

2.802 

(2.766) 

2.360 

(2.328) 

2.675 

(2.592) 

3.964 

(3.938) 

4.795 

(4.832) 

5.223 

(5.125) 

Note: Figures within ( ) indicates average of one-day VaR in last 60-days in the database. 

TABLE 6: VAR ESTIMATION (LOWER/LEFT TAIL) FOR EXCHANGE RATE DATA  

P=0.05 p=0.01 Asset/ 

Foreign Currency Normal Tail- 

Index 

Trans. Based Normal Tail- 

Index 

Trans. Based 

US Dollar 

 

 

0.508 

(0.474) 

0.463 

(0.407) 

0.443 

(0.398) 

0.715 

(0.669) 

1.301 

(1.130) 

0.949 

(0.813) 

Pound Sterling 

 

 

0.971 

(0.983) 

0.967 

(0.984) 

1.018 

(1.035) 

1.392 

(1.411) 

1.328 

(1.968) 

1.336 

(1.686) 

Euro 

 

 

1.098 

(1.148) 

1.073 

(1.164) 

 

1.125 

(1.189) 

1.571 

(1.643) 

2.119 

(2.072) 

1.848 

(1.964) 

Japanese Yen 0.977 

(0.966) 

0.981 

(0.947) 

0.980 

(0.958) 

1.387 

(1.379) 

1.639 

(1.577) 

1.615 

(1.590) 

Note: Figures within ( ) indicates average of one-day VaR in last 60-days in the database 

 

4.3.3 EMPIRICAL EVALUATION OF VAR ESTIMATES/MODELS 

We now assess the accuracy of competing VaR models by passing those through different validation 

criteria discussed earlier. This assessment will also help us to compare the relative performance of 

competing VaR models.  For any such validation and comparison, the strategy adopted is similar to 

that of Bauer (2000); we keep latest 1000 days in our database for validating VaR models. The 

validation begins with the estimation of VaRs at the (T-1000)-th day in our database, where T 

represents the total number of data/days in the database for underlying return series/portfolio. A 

rolling sample of 300 days is used for estimating VaR numbers.  After estimation, we count how often 

in the following 10 days actual portfolio loss (i.e. negative of return series) exceeds estimated VaR. 



The task is done for two alternative probability levels, viz., 0.01 and 0.05. (i.e. confidence levels of 

99% and 95%, respectively). We then shift the estimation period by 10 days into the future and went 

on. The process of estimation and comparing loss with VaR in following 10 days was repeated 100 

times so as to cover all 1000 days in the validation period.  

 

We first present the results of backtesting. While Table 7 reports the percentage of VaR 

failures for stock indices data, corresponding results for exchange rate data are presented in Table 8. 

As can be seen, though all VaR models perform reasonably well for 95% VaR, the VaR violation for 

99% VaR varies considerably across competing models – a findings similar to Bauer (2000), who 

compared two competing VaR methods, viz., ‘hyperbolic distribution-based method’ and ‘normal 

method’. Perhaps, the aberration that occurred in the case of probability level p=0.05 is the case of 

US Dollar exchange rate (against Indian Rupee) where the proportion of VaR violations is as high as 

7.7% (instead of theoretical 5%) for tail-index method. Interestingly, for 99% confidence level, 

performance of ‘transformation-based method’, judged by the ‘proportion of VaR violation’, is 

generally the best followed by ‘tail-index’ and ‘normal’ methods in that order.   

TABLE 7: PERCENTAGE OF VAR VIOLATIONS BY COMPETING MODELS FOR STOCK DATA 

p=0.05 p=0.01 Asset/ 

Portfolio Normal Tail- 

Index 

Trans. Based Normal Tail- 

Index 

Trans. 

Based 

Nifty 4.7 5.3 4.6 1.7 1.3 1.3 

Nifty Junior 4.6 4.9 4.6 2.0 0.8 1.1 

Defty 4.7 5.4 4.5 1.8 1.3 1.1 

 

TABLE 8: FREQUENCY OF VAR VIOLATIONS BY COMPETING MODELS FOR EXCHANGE RATE DATA 

P=0.05 P=0.01 Asset/ 

Foreign Currency Normal Tail-Index Trans.  

Based 

Normal Tail- 

Index 

Trans.  

Based 

US Dollar 5.4 7.6 6.6 2.2 2.1 2.3 

Pound Sterling 5.4 4.9 5.0 1.7 1.5 1.2 

Euro 4.6 4.5 4.5 1.2 1.1 1.0 

Japanese Yen 5.5 5.1 5.5 1.3 0.8 0.9 

 

THE KUPIEC’S TEST FURTHER ESTABLISHES THE SUPERIORITY OF THE TRANSFORMATION-

BASED METHOD OVER BOTH ‘NORMAL’ AND ‘TAIL-INDEX’ METHODS. IT IS INTERESTING TO 

NOTE FROM TABLE 9 THAT IN THE CASE OF STOCK PRICE DATA, THIS TEST IDENTIFIES ALL 

THREE COMPETING VAR MODELS STATISTICALLY ACCURATE FOR 95% CONFIDENCE LEVEL 



(I.E. WHEN PROBABILITY LEVEL IS FIXED AT P=0.05). THIS WAS ALSO EXPECTED FROM EARLIER 

FINDINGS VAR VIOLATIONS. BUT WE SEE DRASTIC IMPROVEMENT FOR TRANSFORMATION-

BASED METHOD WHEN PROBABILITY LEVEL FOR VAR IS FIXED AT P =0.01. NOW, THE KUPIEC’S 

TEST REJECTS THE ACCURACY OF VAR ESTIMATES USING NORMAL METHOD FOR ALL THREE 

STOCK PRICE INDICES CONSIDERED. THE ESTIMATES OF VAR USING TAIL-INDEX AND 

TRANSFORMATION-BASED METHODS ARE NOW STATISTICALLY ACCURATE BUT BETTER FOR 

THE LATER (AS THE P-VALUE OF THE LR TEST-STATISTICS IS HIGHER OR EQUAL TO THOSE 

FOR TAIL-INDEX METHOD).  

 

In the case of exchange rate data also, the Kupiec’s test identifies the ‘transformation-based 

methods’ as the best in all cases except for US Dollar (Table 10). In some cases, normal method also 

produces quite accurate VaR estimates, but even then, transformation-based method perform further 

better.  For example consider the case of ‘euro’ or ‘Japanese Yen’ and probability level 0.01. Here, 

VaR violation from normal method is statistically consistent with the theoretical probability 0.01 as 

corresponding Kupiec’s Chi-square statistics are statistically insignificant at 5% level of significance. 

So is the case with the Chi-Square statistics for other two competing VaR models. But the interesting 

point to note here is that even in such case, the value of the Chi-square statistics is the minimum for 

‘transformation-based’ method. 

TABLE 9: RESULTS OF KUPIEC’S TESTS FOR STOCK DATA 

p=0.05 p=0.01 Asset/ 

Portfolio Normal Tail-

Index 

Trans.  

Based 

Normal Tail-Index Trans.  

Based 

Nifty 

 

 

0.1932 

(0.6603) 

0.1860 

(0.6663) 

0.3457 

(0.5566) 

4.0910* 

(0.0431) 

0.8306 

(0.3621) 

0.8306 

(0.3621) 

Nifty Junior 

 

 

0.3457 

(0.5566) 

0.0212 

(0.8843) 

0.3457 

(0.5566) 

7.8272** 

(0.0052) 

0.4337 

(0.5102) 

0.0978 

(0.7544) 

Defty 0.1932 

(0.6603) 

0.3287 

(0.5664) 

0.5438 

(0.4608) 

5.2251** 

(0.0223) 

0.8366 

(0.3621) 

0.8306 

(0.3621) 

Note: Figures within ( ) denote p-value (probability values); ‘*’ and ‘**’ denote significant at 5% and 1% level 

of significance, respectively. 

 

 

 



TABLE 10: RESULTS OF KUPIEC’S TESTS FOR EXCHANGE RATE DATA 

p=0.05 p=0.01 Asset/ 

Foreign Currency Normal Tail- 

Index 

Trans. 

Based 

Normal Tail-

Index 

Trans.  

Based 

US Dollar 

 

0.3287 

(0.5664) 

12.3621** 

(0.0004) 

4.9184* 

(0.0266) 

10.8382** 

(0.0010) 

9.2840** 

(0.0023) 

12.4853** 

(0.0004) 

Pound Sterling 

 

0.3287 

(0.5664) 

0.0212 

(0.8843) 

0.0000 

(1.0000) 

4.0910* 

(0.0431) 

2.1892 

(0.1390) 

0.3798 

(0.5377) 

Euro 

 

 

0.3457 

(0.5565) 

0.5438 

(0.4608) 

0.5438 

(0.4608) 

0.3798 

(0.5377) 

0.0978 

(0.7544) 

0.0000 

(1.0000) 

Japanese Yen 

 

0.5108 

(0.4749) 

0.0209 

(0.8850) 

0.5105 

(0.4749) 

0.8306 

(0.3621) 

0.4337 

(0.5102) 

0.1045 

(0.7465) 

Note: Figures within ( ) denote p-value (probability values); ‘*’ and ‘**’ denote significant at 5% and 1% level 

of significance, respectively. 

 

We now discuss the values of Regulators’ loss-function (given in Eq. 13) over the validation dataset. 

Relevant results, given in Table 11 (for stock data) and Table 12 (for exchange rate data), show that 

the transformation-based VaR model outperforms other two competing models for stock data, 

though in case of exchange rate data results are mixed. Interestingly, transformation-based model 

performs better than normal method in most of the cases (except only for two cases, viz., for US 

Dollar and Japanese Yen, both corresponding to p=0.05). As known, these regulators’ function 

penalize a model depending upon the extent of loss excess of estimated VaR – leaving the very fact 

of instances of VaR violation contributing to the penalty/loss function.  

TABLE 11: RESULTS OF REGULATOR’S LOSS-FUNCTION FOR STOCK DATA 

p=0.05 p=0.01 Asset/ 

Portfolio Normal Tail-

Index 

Trans.  

Based 

Normal Tail-

Index 

Trans.  

Based 

Nifty 219.31 215.44 213.69 140.84 117.07 100.51 

Nifty Junior 310.13 299.97 302.99 203.26 150.04 146.61 

Defty 246.68 239.43 239.39 164.94 131.89 119.98 

 

 

 



TABLE 12: RESULTS OF REGULATORS’S LOSS-FUNCTION FOR EXCHANGE RATE DATA 

p=0.05 p=0.01 Asset/ 

Foreign Currency Normal Tail-

Index 

Trans.  

Based 

Normal Tail-

Index 

Trans.  

Based 

US Dollar  5.31 6.56 6.02 3.96 2.82 3.71 

Pound Sterling  9.82 9.08 9.53 2.44 1.27 1.58 

Euro 10.32 9.95 10.22 2.63 2.09 2.02 

Japanese Yen 15.57 16.17 16.13 6.29 5.57 4.80 

 

The Lopez’s loss-function (Eq. 12) on the other hand imposes a penalty on a model depending upon 

the frequency of VaR violation and also on the extent of excess loss (excess over VaR). From this 

point of view this loss-function appears more general than the regulators’ loss function. We present 

estimated values of Lopez’s loss-function over validation period in Table 13 (stock indices data) and 

Table 14 (exchange rate data). Based on these Tables also it is clear that the transformation-based 

VaR model outperforms other two competing models for ‘stock data’ (Table 13) and also majority of 

cases for exchange rate data (Table 14). Based on these results it is well established that the 

‘transformation-based’ method is at least a sensible alternative for VaR modelling. 

TABLE 13: RESULTS OF REGULATORS LOSS-FUNCTION FOR STOCK DATA 

p=0.05 p=0.01 Asset/ 

Portfolio Normal Tail-

Index 

Trans.  

Based 

Normal Tail-

Index 

Trans. 

Based 

Nifty 266.31 268.44 259.69 157.84 130.07 113.51 

Nifty Junior 356.13 348.97 348.99 223.26 158.04 157.61 

Defty 293.68 293.43 284.39 182.94 144.89 131.98 

 

TABLE 14: RESULTS OF LOPEZ’S LOSS-FUNCTION FOR EXCHANGE RATE DATA 

p=0.05 p=0.01 Asset/ 

Foreign Currency Normal Tail-

Index 

Trans.  

Based 

Normal Tail-

Index 

Trans. 

Based 

US Dollar 59.13 82.56 72.02 25.96 23.82 26.71 

Pound Sterling 63.82 58.08 59.53 19.44 16.27 13.58 

Euro 56.33 54.95 55.22 14.63 13.09 12.02 

Japanese Yen 70.57 67.17 71.13 19.29 13.57 13.80 

 

 



5. CONCLUDING REMARKS  

We consider a case of estimating VaR when adequately long history of returns from a portfolio is 

available. If returns were normally distributed, estimation of VaR would be made simply by using 

first two moments of the distribution and the tabulated values of standard normal distribution. But 

the experience from empirical literature shows that the task is potentially difficult for the fact that the 

return distribution seldom follows normal distribution. It is observed that empirical return 

distributions have thicker tails than normal and also at times are skewed. In order to handle the non-

normality, a number of techniques have been proposed in the literature. Recently, Samanta (2003) 

proposed a new strategy based on transformations to normality.  He argues that a return series 

(which possibly does not follow normal distribution) may first of all be transformed to a (near) 

normal variable by applying suitable transformations to normality/symmetry; required quantiles of 

this near-normal transformed distribution would be estimated, and finally the value of the inverse 

function of normality transformation at the estimated quantiles would produce required quantiles for 

the original return and hence VaR for actual portfolio. Logically, the performance of proposed 

strategy depends upon the efficiency of the applied transformation to convert a non-normal 

distribution to a (near) normal distribution. Unlike this, the efficiency of conventional strategies lie in 

their capability in approximating unknown (true) distribution of portfolio return. The performance of 

new VaR modelling strategy has been assessed with respect to select stock price indices and exchange 

rates for Indian financial markets. The empirical results are quite encouraging and support the 

usefulness of the new VaR modelling strategy.  
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