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In recent times there have been many advances in quantitative modeling of financial markets
and in this paper, I attempt to use one such technique, Artificial Neural Networks for the
modelling of Asset prices.  The Capital Asset Pricing model (CAPM) has been in use for
over two decades but of late it is becoming increasingly clear that there are sources of priced
risk other than the market portfolio.  Artificial Neural Networks allows us to examine
these other factors of risk without any strong assumptions about the model.  Further Neural
Nets can approximate any non-linear and complex relationship between asset returns and
various factors of  risk thereby allowing us to understand the sensitivity of  asset returns to
various macro-economic factors even under structural or policy changes.
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I Introduction

This study investigates the behavior of multifactor asset pricing model in the
Indian context using a non-parametric tool � Artificial Neural Networks (ANN).

Artificial Neural Networks are widely used in various branches of
engineering and science and their property to approximate complex and
nonlinear equations makes it a useful tool in econometric analysis.  A number
of econometric models have been developed for pricing financial assets and
forecasting financial asset returns.  An empirical econometric analysis starts
with the specification of the econometric model and subsequently we have to
specify a priori the functional form of  the equation, the variables to be included
in the equation and the assumptions about the independent, dependent variables
and error terms.  Neural Nets however make no a priori assumptions about the
problem and let the data speak for themselves without the pre-specification of
a model or equation. Although the CAPM has worked well for a long time,
however, it is now clear that there are sources of priced risk other than market
portfolio.  The evaluation of  the sensitivities of  these other factors to changes
in expected return will broaden our understanding of  capital markets.

II. Asset pricing

The price of an asset is its fundamental value which for reasons of ease and
practicality is measured by the asset�s market price assuming that both will
converge over a long horizon period, that the efficient market hypothesis holds
and market price follows a Random Walk.  The market price under equilibrium
should be equal to the present value of  the future cash flow accruing due to
holding such asset. This therefore means that we have to determine with a certain
degree of accuracy the future cash flows as well as the discount rate.
Cochrane [2001] defines Asset pricing as:

�Asset pricing theory tries to understand the prices or values of  claims to
uncertain payments.  A low price implies a high rate of  return, so one can
also think of the theory as explaining why some assets pay higher average
returns than others.�
Asset prices can be explained by two types of  models, absolute pricing

models and relative pricing models.  CAPM and multifactor models are
examples of  the former and the Black-Scholes option-pricing model is an
example of  the latter.  I quote Cochrane [2001]:

� The central and unfinished task of absolute asset pricing is to understand
and measure the sources of  aggregate or macroeconomic risk that drive
asset prices. Of  course, this is also the central question of  macroeconomics,
and this is a particularly exciting time for researchers who want to answer
these fundamental questions in macroeconomics and finance.
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A lot of empirical work has documented tantalizing stylized facts and
links between macroeconomics and finance.  For example, expected returns
vary across time and across assets in ways that are linked to macro-
economic variables, or variables that also forecast macroeconomic events;
a wide class of  models suggests that a recession or financial distress factor
lies behind many asset prices.  Yet theory lags behind; we do not yet have
a well-described model that explains these interesting correlations.�
The fundamental question is to arrive at the expected return for a particular

security so as to price that security.  The CAPM, which is an equilibrium model,
arrives at this using market index using the concept of  mean-variance efficiency.
However, other than the problem of  determining the composition of  the market
index, beta may vary over time.  APT arrives at this by determining the factor
sensitivities to various factors under the conditions that price levels will adjust
to eliminate any arbitrage opportunities.  In APT, given  various factors and
security�s sensitivity to these factors the expected return can be calculated.  Neural
Net is a generalized approach that attempts to capture the relationship of the
particular security with various macro-economic factors to arrive at the expected
return for the security.  In NN approach, given past values and future expected
values of  macro economic factors, the future expected return from a security
can be calculated without the sensitivities being explicitly calculated.  Further,
even a modest ability to forecast financial asset returns can give handsome returns.
One US dollar invested in US treasury Bills in January 1926 and the proceeds
reinvested every month would give a total value of $14 by December 1996.
The same investment made in S&P500 over the same period would fetch $1,370.
However, if an individual were to forecast in advance for each month, which of
these two investments would give a higher return for the next month and switch
to that investment then by December 1996 the investment would fetch a total
of more than two billion dollars1

Cochrane [2001] states:
�The absolute approach is most common in academic settings, in which
we use asset pricing theory positively to give an economic explanation
for why prices are what they are, or in order to predict how prices might
change if  policy or economic structure changed.�

Kent D. Daniel et al [March 2000] indicates:
�Many empirical studies attempt to predict security stock returns using
not just risk measures like CAPM beta, but also variables such as book /
market that are open to multiple interpretations as either proxies for factor
risk or for market misvaluation. The debate over empirical results has
been pursued in the absence of an explicit model of the ability of different

1 Source: Farmer J.D., Lo A.W. [1999] in �Frontiers of  Finance: Evolution and Efficient Markets�



proxies to predict returns when there are both misvaluation effects and
risk effects among a cross-section of  securities.
Furthermore, it has often been argued that mispricing effects will tend to
be �arbitraged away� by smart traders.  Such arbitrage strategies may include
diversification by trading portfolios of  mispriced securities, and hedging
away of factor risk.  The risk and profitability of multi-security arbitrage
strategies, and the extent to which these do indeed eliminate mispricing
are issues that have yet to be explored in the literature.�

Financial asset pricing can be determined by two types of  models: parametric
or non-parametric.  Parametric methods include the beta method and the
stochastic discount factor method. The beta method uses a linear regression to
estimate the parameters or betas of  the various macroeconomic factors.
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2Normal distribution has the following moments:
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The stochastic discount factor (SDF) method defines the price of the financial
asset in period �t� as the expected value of the product of the stochastic discount
factor for period �t +1� and the payoff on the asset for period �t +1� where the
stochastic discount factor is a function of the historical data and model
parameters.

Pt = E (mt+1 xt+1),
mt+1 = f (data, model parameters)

Where Pt = asset price,

xt+1 = value of asset at time t + 1

mt+1 = stochastic discount factor

Non-parametric methods include Artificial Neural Networks, which are essentially
data driven and statistical methods like Generalised Adaptive Models (GAM) and
Projection Pursuit Regression (PPR). GAMs and PPR are non-parametric methods
of  lagged regression analysis.

III. Capital Asset Pricing Model:

Assumptions:

a) The market is made up of  risk averse investors who measure risk in terms of
standard deviation of  portfolio returns.

This assumption is based on the use of  standard Normal  distribution2

However there is now evidence that returns may not follow a Normal
distribution. I quote Farmer J.D. [1999]:

�the growing awareness of fat tails is changing the way people
characterize risk.  Ten years ago, sophisticated quantitative trading
firms characterized risk in terms of  standard deviation.  Increasingly,
this is changing to Value-at-Risk (VaR), the size of  the loss that
would be experienced with an unfavorable move of a given
probability�.

b) All investors have a common time horizon.
Even as a generalization this assumption may be flawed as investors would
have different time horizons.  I refer to Fractal Market Hypothesis3 :

�If an event occurs that makes the validity of fundamental
information quest ionable,  long-term investors either stop
participating in the market or begin trading based on the short term
information set.  When the over-all investment horizon of  the market
shrinks to a uniform level, the market becomes unstable.  There are
no long term investors to stabilize the market by offering liquidity
to short term investors�

c) Homogeneous expectations i.e. all investors are expected to have same
expectations about future security returns and risks.
It seems to me that, in at least part of  the trading activity, the buyer and
seller would be having different expectations about future security returns,
for otherwise the trade would not take place at all.

d) Capital markets are perfect i.e. assets are completely divisible, there are
no transactions costs or differential taxes and borrowing and lending rates
are equal.
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 I quote Andreas Krause [2001]:
�Models with time varying betas and risk premia have attracted increased

attention in recent years.  The reason on one hand is the empirical evidence that
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covariances, variances and risk premia are not constant over time.  On the other
hand the poor performance of  the traditional CAPM gives rise to modification of
this model.�

In an attempt to correct the deficiencies in CAPM other models have been
developed.  A variation of the CAPM is the conditional CAPM.

Engle [1982] proposed the ARCH [Autoregressive conditional
Heteroskedasticity] model where returns are given by a linear combination of
explanatory variables and an error term with mean zero and the variance of  the
error term is assumed to follow a qth order Auto regressive process.

Bollerslev [1986] proposed a GARCH [generalized Autoregressive
conditional Heteroskedasticity] model wherein the variance of  the error term follows
an (p, q) ARMA [Autoregressive moving average] process.

Engle /Kroner [1995] provided a multivariate version of the GARCH process
where a larger number of assets are being investigated.

Nelson [1991] proposed the exponential GARCH (EGARCH) model.
However all these models are difficult to estimate from data and most investigations
used GARCH (1,1) for computational simplicity.

IV. Arbitrage Pricing Theory

APT states that the single period expected return on any risky asset is approximately
linearly related to its associated factor loadings (i.e. systematic risks) given the
following assumptions:
a) All investors exhibit homogeneous expectations that the stochastic properties

of  capital asset returns are consistent with a linear structure of  K factors.
b) Capital markets are in competitive equilibrium i.e. there are no arbitrage

opportunities in the capital markets.
c) The number of securities in the economy is either infinite or very large.
d) The APT does not specify what the factors are but it is assumed that the

number of  factors can be correctly estimated by the investigator.  APT model
asserts that the random rate of  return on security i is given by the relationship.

The problem of  determination of  market portfolio in CAPM is replaced
with the uncertainty over the choice of and measurement of the underlying factors
in APT.  Further non-linear and linear feedback between stock returns and macro-
economic variables indicate a complex system. Shanken [1982] has questioned
whether an exact risk-return linear relationship is implied in APT.  Ross et al have
identified the following factors: growth rate in industrial production, rate of inflation
(both expected and unexpected), spread between long term and short term interest
rate, spread between low-grade and high grade bonds.
     In a non-equilibrium factor model such as the BARRA4  model about 68
fundamental and industry factors are used.

APT model asserts that the random rate of return on security �i� is given by the
relationship

4 Developed by Barr Rosenberg and Vinay Marathe at the University of  California, Berkeley in the 1970�s.
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Under assumptions that εi  is independent across assets, independent of  the
factors and has zero mean, and also that  δj   have zero mean and variances exist
and further that firm specific risk represents a diversifiable risk which should
have a zero price in a market with no arbitrage opportunities, APT reduces to:
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V. Artificial Neural Networks:

Although the original inspiration for ANN came from biological Neural
Networks, ANN are mathematical models that have very little resemblance to
biological neural systems. The primary parallel between biological nervous
systems and Artificial Neural Networks is that each typically consists of a large
number of simple elements that learn and are able to collectively solve
complicated and ambiguous problems. The interest in ANN from the viewpoint
of econometric forecasting is that Artificial Neural Networks are able to
represent highly complex and non-linear equations.  To get an intuitive idea
about the operation of a simple connected model let us assume a prior linear
equation.

Y ax bx cx dx= + + +1 2 3 4
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This equation can be described by the above model (shown in figure) and the
output neuron performs the summation of  all inputs multiplied by their
respective weights.  However, in reality, ANN does not need any prior equation
as in statistical regression but are able to map the relationship between input
and output vectors by changing the values of  the network�s weights.  If  instead
of  the above linear equation, the output is a non-linear function of  the inputs,
and assuming that this function is not a-priori known to us, then for the sake of
brevity we can write.

Y f x x x x= ( , , , )1 2 3 4

Input neurons 

Hidden neurons 

Output neuron 

x1 

x2 

x3 

x4 

y 

To model this using ANN we require a set of  data, which gives the values
of y for each set of (x1, x2, x3, x4). This set of data is then divided into a
learning set (about 80% of the data) and a test set.  Each set of (x1, x2, x3, x4)
is presented to the ANN. Initial random weight parameters are chosen and the
output is compared to the value of  y.  The difference is called the error term.
The task then is to reduce this error term to a very small pre-specified level
which is called convergence.

An epoch consists of one cycle of presenting each set (x1, x2, x3, x4) to
the ANN.  The error term is then minimised by changing the weight parameters.
There are many methods by which this is done but the back-propagation method
is the most popular.  After a large number of  epoch�s ranging from a few hundred
to ten�s of  thousands, the error term is reduced to a prespecified level.  We then
say that the ANN has learned the input-output relationship between (x1, x2, x3,
x4) and y.  However, it should be understood that the initial layer through which
the values of  (x1, x2, x3, x4) are input do not do any processing. The intermediate
layers (there can be more than one) are called hidden layers and have an activation
function or squashing function. The number of neurons in each hidden layer and the
type of  activation function to be used depends on the judgement of  the modeler.
The output layer can also have an activation function and the number of neurons
depends on the number of  output variables. After the ANN has been trained
(after many epochs) the weights are frozen and the test set data are then presented
to the ANN to examine how well it is able to predict using the weight values
frozen after the training of  the ANN.

Stat ist ica l  tools  l ike mult iple regress ion analys is  require the
prespecification of an equation either linear or non-linear and can therefore be
misspecified if the modeler has no idea of the input-output relationship of the
data set being examined. Studies in ANN gained momentum after 1986 following
the publication by Rumelhart et al of the general framework for an ANN model.
However, it is still a developing subject and has some grey areas where our
understanding is not complete and is therefore a subject of much research.
However, the capacity of ANN to model any complex non-linear relationship
makes it a valuable tool in econometric analysis.  ANN has been used in such
areas as stock price prediction, option trading, bond rating, forecasting financial
distress and also portfolio optimization.

Refenes et al [1995] in �Modelling stock returns in the framework of  APT: a
comparative study with regression model� have indicated

�Neural network architectures have drawn considerable attention in recent
years because of  their interesting learning abilities. They are capable of  dealing
with the problem of  structural instability. Several researchers have reported
exceptional results with the use of  neural networks. Neural networks are
generally believed to be an effective modeling procedure when the mapping
from input to the output vector space contains both regularities and exceptions.
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They are, in principle, capable of solving any nonlinear classification problem,
provided that the network contains a sufficiently large number of free parameters
(hidden units and/or connections)�

Baestaens D.E. et al [1995] have carried out a study of  Amsterdam stock-
market return using ANN.  They conclude their paper with the following remarks:

�We have shown that Multi Layer Backpropagation network analysis is
able to unravel dynamic functional relationships between stock-market returns
and contextual variables and may be helpful in increasing our understanding of
the working of  financial markets.�

VI.  Random Walk Hypothesis:

A Random Walk model assumes that successive price changes are independent
of  each other. If  market returns are determined by the normal distribution
then volatility should increase with the square root of time.  However, a study
on US data shows that US stocks and bonds were bounded at about 4 years.  If
the fundamental value of the asset is to be measured by the market value of the
asset then the assumptions under which this holds is that the markets follow a
random walk and that efficient Markets hypothesis holds. While a rigorous
examination of  the random Walk Hypothesis in the Indian context is beyond
the scope of this paper, a preliminary analysis has been made.  The specification
test for examination of the Infosys stock for a period from 1993 to 2001 is
given here below.

The following specification was used to determine if  the series was random.

p p ut t t= +−1

ut is a random variable and i.i.d. having Gaussian or Normal distribution with
mean zero and constant variance.
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In equation (1) the Left hand side of the equation refers to the square root of
the difference of the square of the price of the stock at various times and the
Right hand side refers to the standard deviation of  the error term. Both the
right hand side and left hand side of the above equation are shown separately in
the above chart indicating the deviations.  No attempt has been made to examine
for heteroskedasticity.

VII. Empirical study using India Data

The empirical study assumes that asset returns are related to certain systematic
economy wide factors plus a unique risk or noise.  No presumption of linearity
of relationship is made.
R f x x x x ui n i  =  ( , , , . . . . . . , )1 2 3 +

The empirical study examines the relationship of macro economic factors
to the returns of  individual assets using Artificial Neural Networks. The BSE
sensex index as well as LT stock has been examined. The results are given in the
appendix.

VIII. Conclusions

The study has been constrained due the lack of availability of high quality data
in the Indian context. This would invariably lead to some errors as a complete
set of factors could not be examined. The analysis of the results of the
preliminary analysis for Random walk of Infosys stock shows that the period
after December 1998 has deviation from a theoretical Random Walk. This
deviation could be due to the process not following a Random Walk or due to
heteroskedasticity or non-normality.

The results of the BSE study show that the functional relationship of the
factors to P/E of the BSE sensex is non-linear and complicated.  It should be
noted that the resulting sensitivity graphs are generated only from the data
without the prespecification of any model.

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time steps

V
al

ue

RHS LHS

Infosys Chart



12 NSE Research Initiative Paper No. 10 13

References:

1. Apostolos-Paul Refenes, 1995, � Neural Networks in the Capital Markets�.
John Wiley and sons, England

2. Baestaens D.E., Willem Max van den Bergh, �tracking the Amsterdam Stock
Index using Neural Networks� in �Neural Networks in the Capital Markets� edited
Refenes A.P. John Wiley & sons.

3. Campbell J.Y., Lo Andrew W., MacKinlay A.C. 1997 � The econometrics
of Financial Markets�

4. Chen, N., 1983, �Some Empirical Tests of  Arbitrage Pricing.� Journal of
Finance, Vol 38, 1393-1414.

5. Chen, N., R.Roll, S.A.Ross, � Economic forces and the stock market�.
Journal of  Business, Vol 59, 383-403.

6. Cochrane, J.H., [2001] �Asset Pricing�. pp3 - 48, Princeton University Press.

7. Daniel, K.D, Hirshleifer, D., Subrahmanyam, A., [2000] �Covariance risk,
mispricing , and the cross section of  security returns�. Working Paper 7615,
National Bureau of Economic Research.

8. Ferson Wayne E., Jagannathan Ravi [1996]: �Econometric evaluation of  asset
pricing models�. Research report, Federal Reserve Bank of  Minneapolis.

9. Hodrick Robert J., Zhang Xiaoyan [2000]: �Evaluating the specification errors
of  asset pricing models�. Working paper, National Bureau of  Economic
Research.

10. John Wei, K.C., 1988, �An Asset-Pricing Theory Unifying the CAPM and APT�.
Journal of  Finance, Vol 43, 881-892.

11. Kaastra Ibeling , Boyd Milton [1995]: �Designing a Neural Network for
forecasting financial and economic time series�. Neurocomputing 10(1996).

12. Kamath M. V. [1999]: �An Introductory Survey of  Artificial Neutral Networks
for Application in Finance and Economics�. M.B.M. Thesis, IIT Kharagpur.

13. Krause Andreas [2001] �An overview of  Asset pricing models� Working paper,
School of Management, University of Bath.

14. Kutsurelis Jason E. [1998]: �Forecasting financial markets using Neural networks:
an analysis of  methods and accuracy� MS thesis, US Naval postgraduate
School.

15. Peters E.E., 1994, �Fractal Market Analysis � Applying Chaos Theory to
Investment and economics�. John Wiley  & Sons.

16. Peters E.E., 1996, �Chaos and order in the Capital markets- A new view of
Cycles, prices and Market volatility� (second edition), John Wiley  & Sons.

17. Philip H.Dybvig , Stephen Ross, 1985 : �Yes , The APT Is Testable�. The
Journal of  finance, Vol 40, 1173-1188.

18. Shanken, J., 1982, �The Arbitrage Pricing Theory: Is it Testable?�. Journal of
Finance, Vol 37, 1129-1140.

19. Trzcinka, C., 1986, �On the numbers of  Factors in the Arbitrage Pricing Model�.
Journal of  Finance, vol 41, 347-368.



14 NSE Research Initiative Paper No. 10 15

Sensitivity about the Mean

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.144 0.181 0.218 0.255 0.292 0.330 0.367 0.404 0.441 0.478 0.515 0.552

Network Output(s) for Varied Input CPI

Sensitivity LT returns
CPI 0.109953642

WPI 0.012613669

Ind.INDEX 0.084565975

Mon. Foreign Res. (cr.) 0.145320013

Av.call 0.12737447

M0 0.105685815

M1 0.194216639

M3 0.104476102

FII 0.054202203

GDP 0.019500101

Savings 0.023411894

Appendix

In examining the P/E ratio of the BSE Sensex the following factors have
been used:

1. Consumer price index

2. Whole sale price index

3. Industrial index

4. Monthly foreign exchange reserves

5. Monthly average call money rate

6. M0 = currency in circulation + Bankers and other deposits with RBI

7. M1= currency with public + demand deposits a + other deposits with RBI.

8. M3 = M1 + time deposits

9. Foreign institutional investments

10. Gross Domestic product

11. Domestic savings.

A multi layer perceptron network was used with the following configuration:
11 input neurons, 4 hidden neurons with sigmoid activation function, one
output neuron with sigmoid activation function. Pre processing of the data
included normalizing the data to the range [0,1]. Training data (monthly) was
from April 1990 to September 1997 and test data was from October 1997 to
March 1998.

In examining the returns on LT during above period the above 11 factors
have been used. However a generalized feed forward neural network with two
hidden layers and jumping connections has been used. The configuration is as
follows: 11- input neurons, 5 sigmoid layer one
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Network Output(s) for Varied Input Savings

Desired Output and Actual Network Output
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Network Output(s) for Varied Input WPI
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Network Output(s) for Varied Input Savings
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